Substitute [tex]x\mapsto\sqrt{1-x^2}[/tex], which transforms the integral to
[tex]\displaystyle \int_0^1 \ln^{2k} \left(\frac{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}\right) \, dx = \int_0^1 \ln^{2k}\left(\frac{\ln\left(\frac{1-x}{\sqrt{1-x^2}}\right)}{\ln\left(\frac{1+x}{\sqrt{1-x^2}}\right)}\right) \frac{x}{\sqrt{1-x^2}} \, dx[/tex]
and factoring [tex]\sqrt{1-x^2}=\sqrt{(1-x)(1+x)}[/tex] reduces this to
[tex]\displaystyle = \int_0^1 \ln^{2k}\left(\frac{\ln\left(\sqrt{\frac{1-x}{1+x}}\right)}{\ln\left(\sqrt{\frac{1+x}{1-x}}\right)}\right) \frac x{\sqrt{1-x^2}} \, dx[/tex]
The inner logarithms differ only by a sign, so that
[tex]\displaystyle = \int_0^1 \ln^{2k}(-1) \frac x{\sqrt{1-x^2}} \, dx[/tex]
Using the principal branch of the complex logarithm, we have
[tex]\ln(-1) = \ln|-1| + i\arg(-1) = i\pi[/tex]
and hence
[tex]\displaystyle \int_0^1 \ln^{2k} \left(\frac{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}{\ln\left(\frac{1-\sqrt{1-x^2}}x\right)}\right) \, dx = (i\pi)^{2k} \underbrace{\int_0^1 \frac x{\sqrt{1-x^2}} \, dx}_{=1} = \boxed{(-\pi^2)^k}[/tex]
where I assume k is an integer.