If the hypotenuse of a right triangle has length 9 feet and one of the other sides has length 2 feet, what is the length of the remaining side, in feet?
[tex]\sf A) \sqrt{11}[/tex]
[tex] \sf B) \sqrt{7}[/tex]
[tex]\sf C) \sqrt{85}[/tex]
[tex]\sf D) \sqrt{77}[/tex]
[tex]\sf E) 7[/tex]

Respuesta :

  • Hypotenuse=H=9ft
  • Base=B=2ft

Apply Pythagorean theorem

  • P²=H²-B²
  • P²=9²-2²
  • P²=81-4
  • P²=77
  • P=√77

Option D

ItzTds

Answer:

[tex]\sf D) \sqrt{77} \: ft [/tex]

Step-by-step explanation:

Given that,

→ Perpendicular (x) = ?

→ Hypotenuse (h) = 9 feet

→ Base (b) = 2 feet

Now by using the Phythagoras theorem,

→ (Hypotenuse)² = (Perpendicular)² + (Base)²

→ (h)² = (x)² + (b)²

→ (9)² = (x)² + (2)²

→ 81 = (x)² + 4

→ (x)² = 81 - 4

→ (x)² = 77

→ [ x = √(77) ]

Thus, length of remaining side is √(77) ft.

RELAXING NOICE
Relax