Answer:
[tex] {\longrightarrow \pmb{\sf {\qquad \frac{1}{24} }}} \\ \\[/tex]
[tex] \: [/tex]
Step-by-step explanation:
It is given that the perimeter of an equilateral triangle is 1/8 unit and we have to find the length of each side of the triangle.
So, we know that,
[tex] \\ {\longrightarrow \pmb{\sf {\qquad 3a = Perimeter_{(Equilateral triangle) }}}} \\ \\[/tex]
Now, substituting the given values in the formula :
[tex]\\ {\longrightarrow \pmb{\sf {\qquad 3a = \frac{1}{8} }}} \\ \\[/tex]
By doing cross multiplication we get :
[tex]{\longrightarrow \pmb{\sf {\qquad 3a(8) = 1(1) }}} \\ \\[/tex]
[tex]{\longrightarrow \pmb{\sf {\qquad 24a = 1 }}} \\ \\[/tex]
Dividing both sides by 24 we get :
[tex] \\ {\longrightarrow \pmb{\sf {\qquad \frac{24a}{24} = \frac{1}{24} }}} \\ \\[/tex]
[tex] {\longrightarrow \pmb{\sf {\qquad a = \frac{1}{24} }}} \\ \\[/tex]
Therefore,