Respuesta :

Answer:

[tex] {\longrightarrow \pmb{\sf {\qquad \frac{1}{24} }}} \\ \\[/tex]

[tex] \: [/tex]

Step-by-step explanation:

It is given that the perimeter of an equilateral triangle is 1/8 unit and we have to find the length of each side of the triangle.

So, we know that,

[tex] \\ {\longrightarrow \pmb{\sf {\qquad 3a = Perimeter_{(Equilateral triangle) }}}} \\ \\[/tex]

Now, substituting the given values in the formula :

[tex]\\ {\longrightarrow \pmb{\sf {\qquad 3a = \frac{1}{8} }}} \\ \\[/tex]

By doing cross multiplication we get :

[tex]{\longrightarrow \pmb{\sf {\qquad 3a(8) = 1(1) }}} \\ \\[/tex]

[tex]{\longrightarrow \pmb{\sf {\qquad 24a = 1 }}} \\ \\[/tex]

Dividing both sides by 24 we get :

[tex] \\ {\longrightarrow \pmb{\sf {\qquad \frac{24a}{24} = \frac{1}{24} }}} \\ \\[/tex]

[tex] {\longrightarrow \pmb{\sf {\qquad a = \frac{1}{24} }}} \\ \\[/tex]

Therefore,

  • The length of each side of the triangle is 1/24 units

ACCESS MORE
EDU ACCESS
Universidad de Mexico