There are 2 tangent lines that pass through the point
[tex]y=\frac{1}{(-1+\sqrt{3)^2} } (x-1)+2[/tex]
and
[tex]y=\frac{1}{(-1-\sqrt{3)^2} } (x-1)+2[/tex]
Explanation:
Given:
[tex]y=\frac{x}{x+1}[/tex]
The point-slope form of the equation of a line tells us that the form of the tangent lines must be:
[tex]y=m(x-1)+2[/tex] [tex][1][/tex]
For the lines to be tangent to the curve, we must substitute the first derivative of the curve for [tex]m[/tex]:
[tex]\frac{dy}{dx} =\frac{d(x)}{dx}(x+1)-x^\frac{d(x+1)}{dx} \\ \\[/tex]
[tex]\frac{dy}{dx} =\frac{x+1-x}{(x+1)^2}[/tex]
[tex]\frac{dy}{dx}= \frac{1}{(x+1)^2}[/tex]
[tex]m=\frac{1}{(x+1)^2}[/tex] [tex][2][/tex]
Substitute equation [2] into equation [1]:
[tex]y=\frac{x-1}{(x+1)^2}+2[/tex] [tex][1.1][/tex]
Because the line must touch the curve, we may substitute [tex]y=\frac{x}{x+1}:[/tex]
[tex]\frac{x}{x+1}=\frac{x-1}{(x+1)^2}+2[/tex]
Solve for x:
[tex]x(x+1)=(x-1)+2(x+1)^2[/tex]
[tex]x^2+x=x-1+2x^2+4x+2[/tex]
[tex]x^2+4x+1[/tex]
[tex]x\frac{-4±\sqrt{4^2-4(1)(1)} }{2(1)}[/tex]
[tex]x=-2[/tex] ± [tex]\sqrt{3}[/tex]
[tex]x=-2[/tex] ± [tex]\sqrt{3}[/tex] [tex]and[/tex] [tex]x=-2-\sqrt{3}[/tex]
There are 2 tangent lines.
[tex]y=\frac{1}{(-1+\sqrt{3)^2} } (x-1)+2[/tex]
and
[tex]y=\frac{1}{(-1-\sqrt{3)^2} } (x-1)+2[/tex]