Using the normal distribution, it is found that the replacement time that separates the top 18% from the bottom 82% is of 11.23 years.
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
In this problem, the mean and the standard deviation are, respectively, given by [tex]\mu = 9.4, \sigma = 2[/tex].
The desired value is the 82nd percentile, which is X when Z = 0.915, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.915 = \frac{X - 9.4}{2}[/tex]
X - 9.4 = 0.915(2)
X = 11.23
The replacement time that separates the top 18% from the bottom 82% is of 11.23 years.
More can be learned about the normal distribution at https://brainly.com/question/24663213