Respuesta :

y=4x²-1

#1

  • y=(2x)²-1²
  • y=(2x+1)(2x-1)

#2

Zeros are 1/2,-1/2

#3

Convert to vertex form y=a(x-h)²+k

  • y=(4x+0)²-1

Vertex(h,k)=(0,-1)

#4

Graph attached

Ver imagen Аноним

Answer:

i)  [tex]y=(2x+1)(2x-1)[/tex]

ii)  [tex]x=-\dfrac12, x=\dfrac12[/tex]

iii)   (0, -1)

iv)  see attached

Step-by-step explanation:

Given quadratic:  [tex]y=4x^2-1[/tex]

Factored form

We can use the Difference of Two Squares to factor the given quadratic.

[tex]a^2-b^2=(a+b)(a-b)[/tex]

Therefore,

[tex]a^2=4x^2=(2x)^2\implies a=2x[/tex]

[tex]b^2=1=1^2 \implies b=1[/tex]

So the relation in factored form is:

[tex]y=(2x+1)(2x-1)[/tex]

Zeros

The zeros of the quadratic polynomial are the x-coordinates of the points where the graph intersects the x-axis, i.e. when y = 0

[tex]\implies y=0[/tex]

[tex]\implies (2x+1)(2x-1)=0[/tex]

[tex]\implies (2x+1)=0\implies x=-\dfrac12[/tex]

[tex]\implies (2x-1)=0\implies x=\dfrac12[/tex]

Therefore, the zeros are -1/2 and 1/2

Vertex

The x-coordinate of the vertex is the midpoint of the zeros.

[tex]\textsf{midpoint}=\dfrac{-\frac12+\frac12}{2}=0[/tex]

To find the y-coordinate of the vertex, substitute the found value of x into the given equation:

[tex]\implies y=4(0)^2-1=-1[/tex]

Therefore, the vertex is (0, -1)

Ver imagen semsee45
ACCESS MORE