There are three values of x where the instantaneous rate of change of f(x) are equal in the open and closed intervals
The function is given as:
[tex]f(x) = \frac 14x^4 - \frac 23x^3 + \frac 12x^2 - \frac 12x[/tex]
Calculate f(0)
[tex]f(0) = \frac 14 * 0^4 - \frac 23 * 0^3 + \frac 12 *0^2 - \frac 12 * 0[/tex]
[tex]f(0) = 0[/tex]
Calculate f(1.565)
[tex]f(1.565) = \frac 14 * 1.565^4 - \frac 23 * 1.565^3 + \frac 12 *1.565^2 - \frac 12 * 1.565[/tex]
[tex]f(1.565) = -0.613[/tex]
The average rate of change is then calculated using:
[tex]m = \frac{f(1.565) - f(0)}{1.565 - 0}[/tex]
This gives
[tex]m = \frac{-0.613 - 0}{1.565 - 0}[/tex]
[tex]m = -0.392[/tex]
Differentiate the function f(x)
[tex]f'(x) = x^3 - 2x^2 + x - \frac 12[/tex]
Set f'(x) to [tex]m = -0.392[/tex]
[tex]x^3 - 2x^2 + x - \frac 12 = -0.392[/tex]
From the graph of the above equation (see attachment), we have three values of x at:
x = 0.1492, x = 0.5614 and x = 1.2894
Hence, there are three values of x in the open interval (0,1.565)
Read more about instantaneous rate at:
https://brainly.com/question/24592593