Respuesta :

Answer:x=70

Step-by-step explanation:

STEP

1

:

           40

Simplify   ——

           x

Equation at the end of step

1

:

 4    40

 — -  ——  = 0

 7    x

STEP

2

:

           4

Simplify   —

           7

Equation at the end of step

2

:

 4    40

 — -  ——  = 0

 7    x

STEP

3

:

Calculating the Least Common Multiple :

3.1    Find the Least Common Multiple

     The left denominator is :       7

     The right denominator is :       x

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

7 1 0 1

Product of all

Prime Factors  7 1 7

                 Number of times each Algebraic Factor

           appears in the factorization of:

   Algebraic    

   Factor      Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

x  0 1 1

     Least Common Multiple:

     7x

Calculating Multipliers :

3.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = x

  Right_M = L.C.M / R_Deno = 7

Making Equivalent Fractions :

3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      4 • x

  ——————————————————  =   —————

        L.C.M              7x  

  R. Mult. • R. Num.      40 • 7

  ——————————————————  =   ——————

        L.C.M               7x  

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

4 • x - (40 • 7)     4x - 280

————————————————  =  ————————

       7x               7x  

STEP

4

:

Pulling out like terms :

4.1     Pull out like factors :

  4x - 280  =   4 • (x - 70)

Equation at the end of step

4

:

 4 • (x - 70)

 ————————————  = 0

      7x    

STEP

5

:

When a fraction equals zero :

5.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 4•(x-70)

 ———————— • 7x = 0 • 7x

    7x  

Now, on the left hand side, the  7x  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  4  •  (x-70)  = 0

Equations which are never true:

5.2      Solve :    4   =  0

This equation has no solution.

A a non-zero constant never equals zero.

Solving a Single Variable Equation:

5.3      Solve  :    x-70 = 0

Add  70  to both sides of the equation :

                     x = 70

One solution was found :

x = 70

ACCESS MORE