Respuesta :

Given↷

[tex] \huge\rightarrow\sin( θ ) = \frac{ - 2 \sqrt{5} }{5} [/tex]

To find↷

  • cos(θ) in IV quadrant

Answer↷

[tex] \huge\rightarrow\cos( θ ) = \frac{ \sqrt{5} }{5} [/tex]

Solution↷

We know that,

sine is the ratio of adjacent side over the hypotenuse.

[tex] \rightarrow\sin( θ ) = \frac{ - 2 \sqrt{5} }{5} = \frac{adjacent \: side}{hypotenuse} \\ [/tex]

also,

cosine is the ratio of base over the hypotenuse.

[tex]\rightarrow\cos( θ ) = \frac{?}{5} \\ [/tex]

  • base = √(h²-a²)
  • h= hypotenuse
  • a= adjacent side

[tex]\rightarrow\cos( θ ) = \frac{ \sqrt{ {5}^{2} - ( - 2\sqrt{ 5} {}^{} ) {}^{2} } }{5} \\ [/tex]

[tex]\rightarrow\cos( θ ) = \frac{ \sqrt{ {5}^{2} - {(2\sqrt{ 5})}^{2} } }{5} \\ [/tex]

[tex]\rightarrow\cos( θ ) = \frac{ \sqrt{25 - 20} }{5} \\ [/tex]

[tex]\rightarrow\cos( θ ) = \frac{ \sqrt{5} }{5} \\ [/tex]

since ,cosine is always positive in the quadrant IV, option 3rd =√5/5 is correct ✓

Note:-

★theta to be used as A

[tex]\\ \rm\Rrightarrow sinA=\dfrac{-2\sqrt{5}}{5}[/tex]

Now

  • cosA=1-sin²A

[tex]\\ \rm\Rrightarrow cosA=\sqrt{1-(dfrac{-2\sqrt{5}}{5})^2}[/tex]

[tex]\\ \rm\Rrightarrow cosA=\sqrt{1-\dfrac{20}{25}}[/tex]

[tex]\\ \rm\Rrightarrow cosA=\sqrt{\dfrac{25-20}{25}}[/tex]

[tex]\\ \rm\Rrightarrow cosA=\dfrac{\sqrt{5}}{5}[/tex]

Option C

ACCESS MORE