Respuesta :

Answer:

12

Step-by-step explanation:

End points of [tex]\overline{RS}[/tex] are:

[tex]R (4, \:-8)\implies x_1 = 4,\: y_1=-8[/tex]

[tex]S (25, \:-1)\implies x_2 = 25,\: y_2=-1[/tex]

Point T divides [tex]\overline{RS}[/tex] in the ratio 4 : 3

[tex]\implies m = 4,\: n= 3[/tex]

Now, by section formula:

[tex]T=\bigg(\frac{mx_2+nx_1}{m+n},\:\:\frac{my_2+ny_1}{m+n}\bigg)[/tex]

Plugging in the values of [tex]x_1 ,\: y_1, \:x_2,\: y_2\:\&\: m, \: n[/tex] in the above formula, we find:

[tex]T=\bigg(\frac{4(25)+3(4)}{4+3},\:\:\frac{4(-1)+3(-8)}{4+3}\bigg)[/tex]

[tex]\implies T=\bigg(\frac{100+12}{7},\:\:\frac{-4-24}{7}\bigg)[/tex]

[tex]\implies T=\bigg(\frac{112}{7},\:\:\frac{-28}{7}\bigg)[/tex]

[tex]\implies T=(16,\:\:-4)[/tex]

Sum of the coordinates of T = 16 + (-4) = 16 - 4 = 12

ACCESS MORE