No links, there are no pictures, just the question


Write the equation of the line that passes through (5, 6) and (8, 4) in slope-intercept form.

Respuesta :

I hope this helps, you can ask any questions for clarification

Ver imagen nchangcomfort06

To write something in slope-intercept form

   ⇒ need to know what slope-intercept looks like: [tex]y = mx +b[/tex]

  • m: the value of the slope
  • b: y-intercept

Let us first find the slope:

     Formula of slope = [tex]\frac{y2-y1}{x2-x1}[/tex]

  • (x1,y1): (5,6)
  • (x2,y2): (8,4)

    Slope = [tex]\frac{4-6}{8-5} =-\frac{2}{3}[/tex]

Lets now write in point-slope form:

     ⇒ [tex](y-y0)=m(x-x0)[/tex]

  • (x0,y0): any point on the line --> (5,6)
  • m: value of slope

   [tex]y - 6 = -\frac{2}{3} (x-5)[/tex]

To write it into slope-intercept form, we must solve for y

   [tex]y = -\frac{2}{3}(x-5)+6 =-\frac{2}{3}x+\frac{10}{3} +6\\y = -\frac{2}{3} x+\frac{10}{3}+\frac{18}{3} \\y = -\frac{2}{3}x+\frac{28}{3}[/tex]<-- slope-intercept form

Hope that helps!

ACCESS MORE