Respuesta :
I hope this helps, you can ask any questions for clarification

To write something in slope-intercept form
⇒ need to know what slope-intercept looks like: [tex]y = mx +b[/tex]
- m: the value of the slope
- b: y-intercept
Let us first find the slope:
Formula of slope = [tex]\frac{y2-y1}{x2-x1}[/tex]
- (x1,y1): (5,6)
- (x2,y2): (8,4)
Slope = [tex]\frac{4-6}{8-5} =-\frac{2}{3}[/tex]
Lets now write in point-slope form:
⇒ [tex](y-y0)=m(x-x0)[/tex]
- (x0,y0): any point on the line --> (5,6)
- m: value of slope
[tex]y - 6 = -\frac{2}{3} (x-5)[/tex]
To write it into slope-intercept form, we must solve for y
[tex]y = -\frac{2}{3}(x-5)+6 =-\frac{2}{3}x+\frac{10}{3} +6\\y = -\frac{2}{3} x+\frac{10}{3}+\frac{18}{3} \\y = -\frac{2}{3}x+\frac{28}{3}[/tex]<-- slope-intercept form
Hope that helps!