BRAINLIEST!! HELP! 30 POINTS!
Let theta equal 17pi/12


Part A: Determine tan θ using the sum formula. Show all necessary work in the calculation. (5 points)


Part B: Determine cos θ using the difference formula. Show all necessary work in the calculation. (5 points)

Respuesta :

The tan θ and cos θ values of 17π/12 are illustrations of trigonometry ratios

The values of tan θ and cos θ are 2 + √3 and (√2 - √6)/4, respectively

Part A: tan θ using the sum formula

We have:

θ = 17π/12

Express as sum

θ = 9π/12 + 8π/12

Simplify

θ = 3π/4 + 2π/3

The above becomes

tan(17π/12) = tan(3π/4 + 2π/3)

Using the sum formula, we have:

tan(A + B) = [tan(A) + tan(B)]/[1 - tan(A)tan(B)]

Substitute known values

tan(3π/4 + 2π/3) = [tan(3π/4) + tan(2π/3)]/[1 - tan(3π/4)tan(2π/3)]

Evaluate the expression

tan(3π/4 + 2π/3) = [-1 - √3]/[1 - (-1)(-√3)]

Evaluate the product

tan(3π/4 + 2π/3) = [-1 - √3]/[1 - √3]

Rationalize

[tex]tan(\frac{3\pi}4 + \frac{2\pi}3) = \frac{-1 - \sqrt3}{1 - \sqrt3} * \frac{1 + \sqrt3}{1 + \sqrt3}[/tex]

Evaluate the product

[tex]tan(\frac{3\pi}4 + \frac{2\pi}3) = \frac{-(1 + \sqrt3)^2}{1 - 3}[/tex]

This gives

[tex]tan(\frac{3\pi}4 + \frac{2\pi}3) = \frac{-(1 + 3 + 2\sqrt 3)}{-2}[/tex]

[tex]tan(\frac{3\pi}4 + \frac{2\pi}3) = \frac{-(4 + 2\sqrt 3)}{-2}[/tex]

Divide

[tex]tan(\frac{3\pi}4 + \frac{2\pi}3) = 2 + \sqrt 3[/tex]

So, we have:

tan(17π/12) = 2 + √3

Part B: cos θ using the difference formula.

We have:

θ = 17π/12

Express as difference

θ = 9π/4 - 5π/6

The above becomes

cos(17π/12) = cos(9π/4 - 5π/6)

Using the difference formula, we have:

cos(A - B) = cos(A)cos(B) + sin(A)sin(B)

So, we have

cos(17π/12) = cos(9π/4)cos(5π/6) + sin(9π/4)sin(5π/6)

Evaluate

[tex]cos(\frac{17\pi}{12}) = \frac{\sqrt 2}{2} * - \frac{\sqrt 3}{2} + \frac{\sqrt 2}{2} * \frac 12[/tex]

Evaluate

[tex]cos(\frac{17\pi}{12}) = \frac{\sqrt 2}{2} (- \frac{\sqrt 3}{2} + \frac 12)[/tex]

Evaluate the difference

[tex]cos(\frac{17\pi}{12}) = \frac{\sqrt 2}{2} (\frac{1 - \sqrt 3}{2})[/tex]

Expand

cos(17π/12) = (√2 - √6)/4

Hence, the values of tan θ and cos θ are 2 + √3 and (√2 - √6)/4, respectively

Read more about trigonometry ratios at:

https://brainly.com/question/11967894

ACCESS MORE