Answer:
[tex]y = -\frac{1}{3} x + 6[/tex]
Step-by-step explanation:
Slope-intercept form: [tex]y = mx + b[/tex], where [tex]m[/tex] is the slope and [tex]b[/tex] is the y-intercept.
The formula to find the slope of a line is [tex]m = \frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex].
1) Plug the coordinates into this [tex]m = \frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex].
[tex]m = \frac{9 -6 }{-9 - 0 }[/tex]
2) Solve it. Simplify it if possible.
[tex]m = \frac{3 }{-9}[/tex]
Simplified: [tex]m = \frac{1 }{-3 }[/tex]
3) Plug the result into [tex]y = mx + b[/tex].
[tex]y = \frac{1}{-3} x + b[/tex]
4) Plug one of the points ([tex]x_{1}, y_{1}[/tex] or [tex]x_{2}, y_{2}[/tex]) into [tex]y = \frac{1}{-3} x + b[/tex] to find [tex]b[/tex].
[tex]6 = \frac{1}{-3}(0) + b[/tex]
[tex]6 = 0 + b[/tex]
[tex]6 - 0 = b[/tex]
[tex]6 = b[/tex]
5) Plug the result of [tex]b[/tex] into [tex]y = \frac{1}{-3} x + b[/tex].
[tex]y = \frac{1}{-3} x + 6[/tex]
The negative situated in the denominator can be genaralised to the fraction.
Therefore, [tex]y = -\frac{1}{3} x + 6[/tex].