A line passes through the points (0, 6) and (–9, 9). What is its equation in slope-intercept form?

Write your answer using integers, proper fractions, and improper fractions in simplest form.

Respuesta :

Answer:

[tex]y = -\frac{1}{3} x + 6[/tex]

Step-by-step explanation:

Slope-intercept form: [tex]y = mx + b[/tex], where [tex]m[/tex] is the slope and [tex]b[/tex] is the y-intercept.

The formula to find the slope of a line is [tex]m = \frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex].

1) Plug the coordinates into this [tex]m = \frac{y_{2} - y_{1} }{x_{2} - x_{1} }[/tex].

[tex]m = \frac{9 -6 }{-9 - 0 }[/tex]

2) Solve it. Simplify it if possible.

[tex]m = \frac{3 }{-9}[/tex]

Simplified: [tex]m = \frac{1 }{-3 }[/tex]

3) Plug the result into [tex]y = mx + b[/tex].

[tex]y = \frac{1}{-3} x + b[/tex]

4) Plug one of the points ([tex]x_{1}, y_{1}[/tex] or [tex]x_{2}, y_{2}[/tex]) into [tex]y = \frac{1}{-3} x + b[/tex] to find [tex]b[/tex].

[tex]6 = \frac{1}{-3}(0) + b[/tex]

[tex]6 = 0 + b[/tex]

[tex]6 - 0 = b[/tex]

[tex]6 = b[/tex]

5) Plug the result of [tex]b[/tex] into [tex]y = \frac{1}{-3} x + b[/tex].

[tex]y = \frac{1}{-3} x + 6[/tex]

The negative situated in the denominator can be genaralised to the fraction.

Therefore, [tex]y = -\frac{1}{3} x + 6[/tex].

ACCESS MORE