Respuesta :
B = (8,-4)
The midpoint formula is (xm,ym) = ((x1+x2)/2, (y1+y2)/2).
(6,2) = ((4+8)/2, (8+(-4))/2)
The midpoint formula is (xm,ym) = ((x1+x2)/2, (y1+y2)/2).
(6,2) = ((4+8)/2, (8+(-4))/2)
Explaination :
★ Given that,
- The midpoint of AB is M(6 , 2)
- The coordinates of A are (4 , 8)
★ To calculate,
- Coordinates of point B?
So here we would be using the formula of calculating the midpoint of two points.
Midpoint of two points:-
- [tex]\boxed{ \sf{M \: = \: \dfrac{x_1 \: + \: x_2 }{2} \: , \: \dfrac{y_1 \: + \: y_2 }{2}}} \: \pink\bigstar[/tex]
★ We have :
- x1 = 4
- y1 = 8
★ Putting the values :
- Refer to the attachment.
★ Therefore,
- Coordinates of the point B is (8 , -4)
Additional Information :
★ Centroid of a triangle :-
- [tex]\boxed{ \sf{Centroid \: = \: \dfrac{x_1 \: + \: x_2 \: + \: x_3}{3} }} \: \pink\bigstar[/tex]
★ Distance Formula :-
- [tex]\huge \large \boxed{\sf{{d \: = \: \sqrt{(x _{2} - x _{1}) {}^{2} \: + \: (y _{2} - y _{1}) {}^{2} }}}} \: \red\bigstar[/tex]
![Ver imagen ItzStarzMe](https://us-static.z-dn.net/files/d86/aff82eeb76bd36bc89c86846dffdc875.jpg)