Respuesta :

B = (8,-4)

The midpoint formula is (xm,ym) = ((x1+x2)/2, (y1+y2)/2).
(6,2) = ((4+8)/2, (8+(-4))/2)

Explaination :

Given that,

  • The midpoint of AB is M(6 , 2)
  • The coordinates of A are (4 , 8)

To calculate,

  • Coordinates of point B?

So here we would be using the formula of calculating the midpoint of two points.

Midpoint of two points:-

  • [tex]\boxed{ \sf{M \: = \: \dfrac{x_1 \: + \: x_2 }{2} \: , \: \dfrac{y_1 \: + \: y_2 }{2}}} \: \pink\bigstar[/tex]

We have :

  • x1 = 4
  • y1 = 8

Putting the values :

  • Refer to the attachment.

Therefore,

  • Coordinates of the point B is (8 , -4)

Additional Information :

Centroid of a triangle :-

  • [tex]\boxed{ \sf{Centroid \: = \: \dfrac{x_1 \: + \: x_2 \: + \: x_3}{3} }} \: \pink\bigstar[/tex]

Distance Formula :-

  • [tex]\huge \large \boxed{\sf{{d \: = \: \sqrt{(x _{2} - x _{1}) {}^{2} \: + \: (y _{2} - y _{1}) {}^{2} }}}} \: \red\bigstar[/tex]
Ver imagen ItzStarzMe