Given f(X)= x+3/x^2+2x-3 and g(x)=log4X, evaluate (g-f)(2)
![Given fX x3x22x3 and gxlog4X evaluate gf2 class=](https://us-static.z-dn.net/files/dfb/9abf738b66232b8eb49d1027e89880cc.png)
Answer:
[tex] - \frac{1}{2} [/tex]
Step-by-step explanation:
First note that
[tex] \frac{x + 3}{ {x}^{2} + 2x - 3} = \frac{x + 3}{(x - 1)(x + 3)} = \frac{1}{x - 1} [/tex]
so we have
[tex] log_{4}(2) - \frac{1}{2 - 1} [/tex]
[tex] \frac{1}{2} - 1[/tex]
[tex] = - \frac{1}{2} [/tex]