Respuesta :
Answer:
Length=14.4
Width=3.6
Step-by-step explanation:
l=4w
2l+2w=36
2(4w)+2w=36
8w+2w=36
10w=36
w=3.6
l=4w
4(3.6)
l=14.4
*check by plugging in answers into 2l+2w=36*
Answer:
[tex]L=\frac{72}{5}[/tex] or 14.4
[tex]W=\frac{18}{5}[/tex] or 3.6
Step-by-step explanation:
Please take note this probably not the easiest way to do the problem.
Formula for the Perimeter of Rectangle
[tex]P=2L+2W[/tex]
We are given the perimter.
[tex]36=2L+2W[/tex]
[tex]L=4*W[/tex]
To solve I would use the Gauss-Jordan method. (it is advanced, but it makes sense to me)
[tex]36=2L+2W[/tex]
[tex]L=4*W[/tex]
Write the coefficients of each eqaution as rows in the matrix.
[tex]\left[\begin{array}{ccc}2&2&36\\1&-4&0\\\end{array}\right][/tex]
Divide the first row by 2.
[tex]\left[\begin{array}{ccc}1&1&18\\1&-4&0\\\end{array}\right][/tex]
Multiply row 1 by -1 and add it to row 2.
[tex]\left[\begin{array}{ccc}1&1&18\\0&-5&-18\\\end{array}\right][/tex]
Divide the second row by -5.
[tex]\left[\begin{array}{ccc}1&1&18\\0&1&\frac{18}{5} \\\end{array}\right][/tex]
Multiply row 2 by -1 and add it to row 1.
[tex]\left[\begin{array}{ccc}1&0&\frac{72}{5} \\0&1&\frac{18}{5} \\\end{array}\right][/tex]
We now have an augmented matrix.
[tex]L=\frac{72}{5}[/tex]
[tex]W=\frac{18}{5}[/tex]