[tex]~~~~~~~~~~~~\stackrel{\textit{payments at the end of the period}}{\textit{Future Value of an ordinary annuity}} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\\\ ~~~~~~ \begin{cases} A=\textit{accumulated amount}\\ pymnt=\textit{periodic payments}\dotfill &279\\ r=rate\to 6\%\to \frac{6}{100}\dotfill &0.06\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four} \end{array}\dotfill &4\\ t=years\dotfill &22 \end{cases}[/tex]
[tex]A=279 \left[ \cfrac{\left( 1+\frac{0.06}{4} \right)^{4 \cdot 22}-1}{\frac{0.06}{4}} \right]\implies A=279\left[\cfrac{1.015^{88}~~ - ~~1}{0.015} \right] \\\\[-0.35em] ~\dotfill\\\\ ~\hfill A\approx 50348.47~\hfill[/tex]