Answer:
[tex]10.4\: \sf cm^2\:(3\:sf)[/tex]
Step-by-step explanation:
[tex]\Large\boxed{\sf Formulae}[/tex]
Sine Rule
[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]
(where A, B and C are the angles and a, b and c are the sides opposite the angles)
Cosine rule
[tex]c^2=a^2+b^2-2ab\cos C[/tex]
Area of a triangle
[tex]\textsf{Area of a triangle}=\dfrac12ab\sin C[/tex]
where:
- C is the angle
- c is the side opposite the angle
- a and b are the sides adjacent the angle
[tex]\Large\boxed{\sf Calculation}[/tex]
To find the area of ΔBCD, find:
- length of CD
- angle CDB
- length of BD
Then use the sine rule for area of a triangle
Calculate length CD using cosine rule:
[tex]\implies CD^2=4.9^2+3.8^2-2(4.9)(3.8)\cos 80^{\circ}[/tex]
[tex]\implies CD^2=31.98334186...[/tex]
[tex]\implies CD=5.655381673...\:\sf cm[/tex]
Calculate ∠ADC using sine rule:
[tex]\implies \dfrac{\sin 80}{CD}=\dfrac{\sin ADC}{4.9}[/tex]
[tex]\implies ADC=\sin^{-1}\left(\dfrac{4.9 \sin 80}{CD}\right)=58.568949^{\circ}[/tex]
Therefore, ∠CDB = 180° - 58.568949° = 121.431051°
Use sine rule to calculate DB:
[tex]\implies \dfrac{DB}{\sin 25}=\dfrac{CD}{\sin CBD}[/tex]
[tex]\implies DB=\dfrac{5.655381673\sin25}{\sin 33.568949}=4.322471258..\: \sf cm[/tex]
[tex]\Large\boxed{\sf Solution}[/tex]
Use the sine rule for area of a triangle to find area of ΔBCD:
[tex]\implies A=\dfrac12(CD)(DB)\sin CDB[/tex]
[tex]\implies A=\dfrac12(5.655381673)(4.322471258)\sin (121.431051)[/tex]
[tex]\implies A=10.4\: \sf cm^2\:(3\:sf)[/tex]