Respuesta :

Answer:

[tex]10.4\: \sf cm^2\:(3\:sf)[/tex]

Step-by-step explanation:

[tex]\Large\boxed{\sf Formulae}[/tex]

Sine Rule

[tex]\dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c}[/tex]

(where A, B and C are the angles and a, b and c are the sides opposite the angles)

Cosine rule

[tex]c^2=a^2+b^2-2ab\cos C[/tex]

Area of a triangle

[tex]\textsf{Area of a triangle}=\dfrac12ab\sin C[/tex]

where:

  • C is the angle
  • c is the side opposite the angle
  • a and b are the sides adjacent the angle

[tex]\Large\boxed{\sf Calculation}[/tex]

To find the area of ΔBCD, find:

  • length of CD
  • angle CDB
  • length of BD

Then use the sine rule for area of a triangle

Calculate length CD using cosine rule:

[tex]\implies CD^2=4.9^2+3.8^2-2(4.9)(3.8)\cos 80^{\circ}[/tex]

[tex]\implies CD^2=31.98334186...[/tex]

[tex]\implies CD=5.655381673...\:\sf cm[/tex]

Calculate ∠ADC using sine rule:

[tex]\implies \dfrac{\sin 80}{CD}=\dfrac{\sin ADC}{4.9}[/tex]

[tex]\implies ADC=\sin^{-1}\left(\dfrac{4.9 \sin 80}{CD}\right)=58.568949^{\circ}[/tex]

Therefore, ∠CDB = 180° - 58.568949° = 121.431051°

Use sine rule to calculate DB:

[tex]\implies \dfrac{DB}{\sin 25}=\dfrac{CD}{\sin CBD}[/tex]

[tex]\implies DB=\dfrac{5.655381673\sin25}{\sin 33.568949}=4.322471258..\: \sf cm[/tex]

[tex]\Large\boxed{\sf Solution}[/tex]

Use the sine rule for area of a triangle to find area of ΔBCD:

[tex]\implies A=\dfrac12(CD)(DB)\sin CDB[/tex]

[tex]\implies A=\dfrac12(5.655381673)(4.322471258)\sin (121.431051)[/tex]

[tex]\implies A=10.4\: \sf cm^2\:(3\:sf)[/tex]

ACCESS MORE