Respuesta :

Answer:

[tex]7y=-5x-11[/tex]

Step-by-step explanation:

Since it says the lines are parallel both of their gradients will be same.

so gradient of line 1 = [tex]y=\frac{14-5x}{7}[/tex] = [tex]y=\frac{14}{7}-\frac{5x}{7}[/tex]= [tex]-\frac{5}{7}[/tex]

so equation of line 2 = [tex]y-y_{1}=m(x-x_{1} )[/tex]

                                   = [tex]y-(-3)_{}=\frac{-5}{7} (x-(-2)_{} )[/tex]

                                   = [tex]y +3=-\frac{5}{7}x+\frac{10}{7}[/tex]

                                   = [tex]y =-\frac{5x+10}{7}-3[/tex]

                                   = [tex]7y=-5x-11[/tex]

Step-by-step explanation:

basically a line equation typically looks like

y = ax + b

with a being the slope, and b bent the y-intercept (y value when x = 0).

5x + 7y = 14

7y = -5x + 14

y = -5/7 x + 14/7 = -5/7 x + 2

so, wie know the slope of the original line : -5/7 .

any line parallel to it must have the same slope.

our desired line looks like

y = -5/7 x + b

to get b we use the provided point (-2, -3).

-3 = -5/7 × -2 + b = 10/7 + b

-21/7 = 10/7 + b

-31/7 = b

and the full equation is

y = -5/7 x - 31/7

7y = -5x - 31

5x + 7y = -31

ACCESS MORE

Otras preguntas