Respuesta :

Answer:

x = 50 degrees

Step-by-step explanation:

all the angles of a triangle add up to 180

a right angle is ninety degrees

90 + the 40 degrees on the top is 130 degrees

180 - 130 is 50

x = 50

Answer:

  • 50°

[tex] \: [/tex]

Step-by-step explanation:

Before finding the value of x, we must know this first.

[tex] \\ \longrightarrow \qquad { \underline{ \boxed{ \pmb{ \frak{Sum \: of \: all \: \: angles_{(Triangle)} = 180 {}^{ \circ} }}}}} \: \: \bigstar \\ \\ [/tex]

This is a right angled triangle so,

[tex] \\ \longrightarrow \qquad { { { \pmb{ \sf{ \angle \: 1 +\angle \: 2 + \angle \: 3= {180}^{ \circ} }}}}} \\ \\ [/tex]

[tex]\longrightarrow \qquad { { { \pmb{ \sf{ x^{ \circ} + {90}^{ \circ} + {40}^{ \circ} = {180}^{ \circ} }}}}} \\ \\ [/tex]

Adding like terms we get :

[tex] \\ \longrightarrow \qquad { { { \pmb{ \sf{ x^{ \circ} + {130}^{ \circ} = {180}^{ \circ} }}}}} \\ \\ [/tex]

Subtracting 130° from both sides :

[tex] \\ \longrightarrow \qquad { { { \pmb{ \sf{ x^{ \circ} + {130}^{ \circ} - {130}^{ \circ} = {180}^{ \circ}- {130}^{ \circ}}}}}} \\ \\ [/tex]

[tex]\longrightarrow \qquad { \underline { \boxed{ \pmb{ \frak{ x^{ \circ} = {50}^{ \circ}}}}}} \: \: \bigstar\\ \\ [/tex]

Therefore,

  • The value of x° is 50°

ACCESS MORE