Respuesta :

Answer:

See Explanation

Step-by-step explanation:

Given

[tex]\frac{x}{a}= \frac{y}{b} =\frac{z}{c}[/tex]

[tex]Let \: \frac{x}{a}= \frac{y}{b} =\frac{z}{c}=m[/tex]

(where m is any constant)

[tex]\implies[/tex]

[tex]\frac{x}{a}=m\implies x =am[/tex]

[tex]\frac{y}{b}=m\implies y =bm[/tex]

[tex]\frac{z}{c}=m\implies z =cm[/tex]

To Prove:

[tex]\frac{ax-by}{(a+b)(x-y)}+\frac{by-cz}{(b+c)(y-z)}=2[/tex]

LHS [tex]=\frac{ax-by}{(a+b)(x-y)}+\frac{by-cz}{(b+c)(y-z)}[/tex]

(Plug the values of x, y and z in the form of am, bm and cm respectively in the LHS)

[tex]=\frac{a(am)-b(bm)}{(a+b)(am-bm)}+\frac{b(bm)-c(cm)}{(b+c)(bm-cm)}[/tex]

[tex]=\frac{a^2m-b^2m}{(a+b)m(a-b)}+\frac{b^2m-c^2m}{(b+c)m(b-c)}[/tex]

[tex]=\frac{m(a^2-b^2)}{m(a+b)(a-b)}+\frac{m(b^2-c^2)}{m(b+c)(b-c)}[/tex]

[tex]=\frac{\cancel{m(a^2-b^2)}}{\cancel{m(a^2-b^2)}}+\frac{\cancel{m(b^2-c^2)}}{\cancel{m(b^2-c^2)}}[/tex]

= 1 + 1

= 2

= RHS

[tex]\implies \purple{\bold{\frac{ax-by}{(a+b)(x-y)}+\frac{by-cz}{(b+c)(y-z)}}}=\red{\bold{2}}[/tex]

Thus proved

RELAXING NOICE
Relax