CALC HELP!
16
18
8
32

Answer:
[tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18[/tex]
General Formulas and Concepts:
Calculus
Integration
Integration Property [Flipping Integral]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx[/tex]
Integration Property [Splitting Integral]: [tex]\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^8_2 {g(x)} \, dx = 13[/tex]
[tex]\displaystyle \int\limits^8_6 {g(x)} \, dx = -3[/tex]
[tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx[/tex]
Step 2: Integrate
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration