Respuesta :

Space

Answer:

[tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18[/tex]

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Property [Flipping Integral]:                                                               [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx[/tex]

Integration Property [Splitting Integral]:                                                               [tex]\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^8_2 {g(x)} \, dx = 13[/tex]

[tex]\displaystyle \int\limits^8_6 {g(x)} \, dx = -3[/tex]

[tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx[/tex]

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Flipping Integral]:                       [tex]\displaystyle \int\limits^8_6 {g(x)} \, dx = -3 \rightarrow \int\limits^6_8 {g(x)} \, dx = 3[/tex]
  2. [Integral] Rewrite [Integration Property - Splitting Integral]:                       [tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 2 + \int\limits^8_2 {g(x)} \, dx + \int\limits^6_8 {g(x)} \, dx[/tex]
  3. [Integrals] Substitute:                                                                                    [tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 2 + 13 + 3[/tex]
  4. Simplify:                                                                                                         [tex]\displaystyle 2 + \int\limits^6_2 {g(x)} \, dx = 18[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

ACCESS MORE
EDU ACCESS