If 0 is an angle in quadrant II, what is the value of cos0?

in the II Quadrant, let's recall that the adjacent side or cosine is negative whilst the opposite side or sine is positive, thus
[tex]tan(\theta )=-\sqrt{\cfrac{19}{17}}\implies tan(\theta )=\cfrac{\stackrel{opposite}{\sqrt{19}}}{\underset{adjacent}{-\sqrt{17}}}\impliedby \qquad \textit{let's find the \underline{hypotenuse}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies c=\sqrt{a^2+b^2} \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}[/tex]
[tex]c=\sqrt{(-\sqrt{17})^2~~ + ~~(\sqrt{19})^2}\implies c=\sqrt{17+19}\implies c=\sqrt{36}\implies c=6 \\\\[-0.35em] ~\dotfill\\\\ ~\hfill cos(\theta )=\cfrac{\stackrel{adjacent}{-\sqrt{17}}}{\underset{hypotenuse}{6}}~\hfill[/tex]