Respuesta :

Answer:

Roots:  [tex]\displaystyle\mathsf{x=\frac{-3+\sqrt{\:33}}{2}}[/tex] ,   [tex]\displaystyle\mathsf{x=\frac{-3-\sqrt{\:33}}{2}}[/tex]

Step-by-step explanation:

Given:

  • Quadratic equation in standard form = x² + 3x – 6 = 0, where a = 1, b = 3, and c = -6, for which we must find its roots.

Quadratic formula:

  • We can use the following quadratic formula to find the roots of the given quadratic equation:

            ⇒     [tex]\displaystyle\mathsf{x=\frac{-b\pm\sqrt{\:b^2-4ac}}{2a}}[/tex]

Definition of roots:

  • The roots are the x-intercepts of the quadratic equation, which are the points on the graph where it crosses the x-axis.
  • In the quadratic formula, the terms under the radical (b² - 4ac) is referred to as the discriminant.
  • The discriminant tells us whether a quadratic equation has one, two, or no real roots.

Solution:

Step 1: Substitute the values for a, b, and c into the quadratic formula to find the roots of the quadratic equation.

x² + 3x – 6 = 0  

      ⇒   a = 1, b = 3, and c = -6

[tex]\displaystyle\mathsf{x=\frac{-b\pm\sqrt{\:b^2-4ac}}{2a}}[/tex]

[tex]\displaystyle\mathsf{x=\frac{-3\pm\sqrt{\:(3)^2-4(1)(-6)}}{2(1)}}[/tex]

Step 2: Following the PEMDAS rule of Operations, apply the exponent (under the radical).

[tex]\displaystyle\mathsf{x=\frac{-3\pm\sqrt{\:9-4(1)(-6)}}{2(1)}}[/tex]

Step 3: Following the PEMDAS rule of Operations, multiply the integers in the numerator (under the radical) and the denominator.  

[tex]\displaystyle\mathsf{x=\frac{-3\pm\sqrt{\:33}}{2}}[/tex]  

Step 4: Separate the roots.

[tex]\displaystyle\mathsf{x=\frac{-3+\sqrt{\:33}}{2}}[/tex] ,   [tex]\displaystyle\mathsf{x=\frac{-3-\sqrt{\:33}}{2}}[/tex]

Final answer:

Therefore, the roots of the quadratic equation, x² + 3x – 6 = 0 are:  

[tex]\displaystyle\mathsf{x=\frac{-3+\sqrt{\:33}}{2}}[/tex] ,   [tex]\displaystyle\mathsf{x=\frac{-3-\sqrt{\:33}}{2}}[/tex]  

_________________________

Keywords:

Quadratic equation

Quadratic function

Parabola

Standard form

Roots    

______________________________

Learn more about quadratic equations here:

https://brainly.com/question/18797214

Ver imagen djtwinx017
RELAXING NOICE
Relax