Respuesta :

Answer:

[tex]f(x)=\sqrt[3]{x-2} +1[/tex]

Step-by-step explanation:

Given function for graph:  [tex]f(x)=1\sqrt[3]{x-h} +k[/tex]

where (h, k) is the midpoint of the curve.

Therefore, the parent function is [tex]f(x)=\sqrt[3]{x}[/tex]

[tex]f(x)=1\sqrt[3]{x-h} +k[/tex] can be obtained by translating [tex]f(x)=\sqrt[3]{x}[/tex] to [tex]h[/tex] units to the right and [tex]k[/tex] units up

The x and y intercept of [tex]f(x)=\sqrt[3]{x}[/tex] is the origin

Therefore, this graph has been translated 2 units to the right and 1 unit up.

Therefore, [tex]h=2[/tex] and [tex]k=1[/tex]

Substituting these values into the given function:

[tex]\implies f(x)=\sqrt[3]{x-2} +1[/tex]

RELAXING NOICE
Relax