Rewrite the limand as
[tex]k^2 \left(\pi^{\frac1{k+1}} - \pi^{\frac1k}\right) = k^2 \pi^{\frac1{k+1}} \left(1 - \pi^{\frac1{k^2+k}}\right) = k^2 \pi^{\frac1{k+1}} \left(1 - \exp\left(\frac{\ln(\pi)}{k^2+k}\right)\right)[/tex]
In the limit, the [tex]\pi^{1/(k+1)}[/tex] term converges to 0, and the rest we can rearrange as
[tex]\displaystyle \lim_{k\to\infty} \frac{1 - \exp\left(\frac{\ln(\pi)}{k^2+k}\right)}{\frac1{k^2}}[/tex]
Applying L'Hopital's rule yields
[tex]\displaystyle \lim_{k\to\infty} \frac{\ln(\pi) \frac{2k+1}{(k^2+k)^2} \exp\left(\frac{\ln(\pi)}{k^2+k}\right)}{-\frac2{k^3}}[/tex]
The exponential term converges to 0 and the rational expression converges to 1, so the overall limit is [tex]\boxed{-\ln(\pi)}[/tex]