What is the area in polynomial form

Answer:
[tex] \orange{ \boxed{ \sf{ ( \: {x}^{2} + 11x + 18 \: ) \: sq. \: units}}}[/tex]
Solution :
Lenght = x + 9
Width = x + 2
[tex] \sf \green{area \: = \: (x + 9)(x + 2)} \\ \sf \green{ = \: { {x}^{2} + 11x + 18}} [/tex]
Answer:
[tex]x^2+11x+18\: \sf(square\:units)[/tex]
Step-by-step explanation:
To use the area model of solving multiplication and division problems, calculate the area of each of the colored rectangles and add them together.
Area of a rectangle = Length × Width
Area of blue rectangle: [tex]x \times x = x^2[/tex]
Area of pink rectangle: [tex]x \times 9 = 9x[/tex]
Area of green rectangle: [tex]2 \times x=2x[/tex]
Area of orange rectangle: [tex]2 \times 9=18[/tex]
Area of entire rectangle = blue + pink + green + orange
= [tex]x^2+9x+2x+18[/tex]
= [tex]x^2+11x+18\: \sf(square\:units)[/tex]