Answer:
[tex] \sqrt{50} [/tex]
Step-by-step explanation:
Step 1: Put the line in slope intercept form,
[tex]x + 7y = 7[/tex]
[tex]7y = - x + 7[/tex]
[tex]y = - \frac{x}{7} + 1[/tex]
Step 2: The line that contains the point must be perpendicular to the original line.
So the slope of this line must be 7, and pass through (6,-7).
So we have
[tex]y + 7 = 7(x - 6)[/tex]
[tex]y + 7 = 7x - 42[/tex]
[tex]y = 7x - 49[/tex]
Step 3: Find where the lines intersect at:
Now, we set that equal to -x/7+1
[tex] \frac{ - x}{7} + 1 = 7x - 49[/tex]
[tex] - x + 7 = 49x - 343[/tex]
[tex]350 = 50x[/tex]
[tex]7 = x[/tex]
So the two lines intersect at (7,y).
To find y, plug in 7 for any function
[tex] \frac{ - 7}{7} + 1 = 0[/tex]
So y=0.
So the two lines intersect at (7,0).
Step 4: Use distance formula,
Find the distance between (7,0) and (6,-7).
[tex]d = \sqrt{ (- 7 - 0) {}^{2} + (6 - 7) {}^{2} } [/tex]
[tex]d = \sqrt{ - 7) {}^{2} + ( - 1) {}^{2} } [/tex]
[tex]d = \sqrt{50} [/tex]
So the distance to the line root of 50.