Respuesta :

Answer:

A. (-5, -28)

Step-by-step explanation:

Ver imagen Аноним

The coordinates of the vertex of the function [tex]\rm f(x) = x^2+10x-3[/tex]  is

(-5, -28).

It is given that the function  [tex]\rm f(x) = x^2+10x-3[/tex]

It is required to find the coordinates of the vertex.

What is a parabola?

It is defined as the graph of a quadratic function that has something bowl-shaped.

We have a function:

[tex]\rm f(x) = x^2+10x-3[/tex]

This function represents a parabola.

We know the standard form of parabola in quadratic style:

[tex]\rm f(x)=ax^2+bx+c[/tex]

By comparing the given function to the standard form of parabola, we get

a = 1, b = 10, and c = -3

The vertex of the parabola is given by:

[tex]\rm x = -\frac{b}{2a}[/tex]

Putting the values in the above equation, we get:

[tex]\rm x = -\frac{10}{2\times1} \Rightarrow -5[/tex]

x = -5 put this value in the given parabola function, we get:

[tex]\rm f(-5) = (-5)^2+10(-5)-3\\\rm f(-5) = 25-50-3\\\rm f(-5) = -28[/tex]

or y = -28

The coordintes = (x, y) : (-5 , -28) which is shown in the graph.

Thus, the coordinates of the vertex of the function [tex]\rm f(x) = x^2+10x-3[/tex]  is (-5, -28).

Know more about the parabola here:

brainly.com/question/8708520

Ver imagen maheshpatelvVT
RELAXING NOICE
Relax