Answer:
The velocity of this particle is [tex]25\; {\rm m \cdot s^{-1}}[/tex] at [tex]t = 4\; {\rm s}[/tex].
Acceleration is constantly [tex]6\; {\rm m\cdot s^{-2}}[/tex] (and thus is never [tex]0[/tex].)
Step-by-step explanation:
The distance between the particle and the initial position is the displacement of this particle. Let [tex]x(t)[/tex] denote the displacement (in meters) of this particle at time [tex]t[/tex] (in seconds.) The question states that [tex]x(t) = 3\, t^{2} + t[/tex].
Differentiate displacement [tex]x(t)[/tex] with respect to time [tex]t[/tex] to find the velocity [tex]v(t)[/tex] (in [tex]{\rm m \cdot s^{-1}}[/tex]) of this particle:
[tex]\begin{aligned}v(t) &= \frac{d}{d t}\left[x(t)\right] \\ &= \frac{d}{d t}\left[3\, t^{2} + t\right] \\ &= 6\, t + 1 \end{aligned}[/tex].
Set velocity to [tex]25\; {\rm m\cdot s^{-1}}[/tex] and solve for time [tex]t[/tex] (in seconds):
[tex]v(t) = 25[/tex].
[tex]6\, t + 1 = 25[/tex].
[tex]t = 4[/tex].
Thus, the velocity of this particle is [tex]25\; {\rm m \cdot s^{-1}}[/tex] at [tex]t = 4\; {\rm s}[/tex].
Differentiate velocity [tex]v(t)[/tex] with respect to time [tex]t[/tex] to find the acceleration (in [tex]{\rm m\cdot s^{-2}}[/tex]) of this particle:
[tex]\begin{aligned}a(t) &= \frac{d}{d t}\left[v(t)\right] \\ &= \frac{d}{d t}\left[6\, t + 1\right] \\ &= 6\end{aligned}[/tex].
In other words, the acceleration of this particle is constantly equal to [tex]6\; {\rm m\cdot s^{-2}}[/tex]. Hence, the acceleration of this particle is never [tex]0[/tex].