Respuesta :

Answer:

[tex]{x,y}={3,3}[/tex]

Step-by-step explanation:

System of Linear Equations entered :

[tex][1] 2x + 3y = 15\\ [2] x + y = 6[/tex]

Graphic Representation of the Equations :

3y + 2x = 15        y + x = 6  

Solve by Substitution :

// Solve equation [2] for the variable  y

 [2]    y = -x + 6

// Plug this in for variable  y  in equation [1]

  [1]    2x + 3•(-x +6) = 15

  [1]    -x = -3

// Solve equation [1] for the variable  x

  [1]    x = 3

// By now we know this much :

   x = 3

   y = -x+6

// Use the  x  value to solve for  y

   y = -(3)+6 = 3

Solution :

{x,y} = {3,3}

Ver imagen Аноним

Answer:

[tex](3,3)[/tex]

Step-by-step explanation:

[tex]\begin{bmatrix}2x+3y=15\\ x+y=6\end{bmatrix}[/tex]

[tex]\mathrm{Substitute\:}x=\frac{15-3y}{2}[/tex]

[tex]\begin{bmatrix}\frac{15-3y}{2}+y=6\end{bmatrix}[/tex]

[tex]\begin{bmatrix}\frac{15-y}{2}=6\end{bmatrix}[/tex]

[tex]y=3[/tex]

[tex]\mathrm{For\:}x=\frac{15-3y}{2}[/tex]

[tex]\mathrm{Substitute\:}y=3[/tex]

[tex]x=\frac{15-3\cdot \:3}{2}[/tex]

[tex]15-9=6[/tex]

[tex]\frac{6}{2}=3[/tex]

[tex]x=3[/tex]

ACCESS MORE