Respuesta :
Answer:
[tex]{x,y}={3,3}[/tex]
Step-by-step explanation:
System of Linear Equations entered :
[tex][1] 2x + 3y = 15\\ [2] x + y = 6[/tex]
Graphic Representation of the Equations :
3y + 2x = 15 y + x = 6
Solve by Substitution :
// Solve equation [2] for the variable y
[2] y = -x + 6
// Plug this in for variable y in equation [1]
[1] 2x + 3•(-x +6) = 15
[1] -x = -3
// Solve equation [1] for the variable x
[1] x = 3
// By now we know this much :
x = 3
y = -x+6
// Use the x value to solve for y
y = -(3)+6 = 3
Solution :
{x,y} = {3,3}
![Ver imagen Аноним](https://us-static.z-dn.net/files/df3/7bcf868efe5983940a58dcc6e6c5cb77.png)
Answer:
[tex](3,3)[/tex]
Step-by-step explanation:
[tex]\begin{bmatrix}2x+3y=15\\ x+y=6\end{bmatrix}[/tex]
[tex]\mathrm{Substitute\:}x=\frac{15-3y}{2}[/tex]
[tex]\begin{bmatrix}\frac{15-3y}{2}+y=6\end{bmatrix}[/tex]
[tex]\begin{bmatrix}\frac{15-y}{2}=6\end{bmatrix}[/tex]
[tex]y=3[/tex]
[tex]\mathrm{For\:}x=\frac{15-3y}{2}[/tex]
[tex]\mathrm{Substitute\:}y=3[/tex]
[tex]x=\frac{15-3\cdot \:3}{2}[/tex]
[tex]15-9=6[/tex]
[tex]\frac{6}{2}=3[/tex]
[tex]x=3[/tex]