Respuesta :

Answer :

  • Option C (x = 3 or x = -13)

Explanation :

[tex] \longrightarrow \sf \qquad {x}^{2} + 10x = 39[/tex]

We can write it as,

[tex] \longrightarrow \sf \qquad {x}^{2} + 10x - 39 = 0[/tex]

We have to find the two numbers a and b such that,

[tex] \longrightarrow \sf \qquad a + b = 10[/tex]

[tex] \longrightarrow \sf \qquad a b = 39[/tex]

Obviously, the two numbers are 3 and 13.

[tex] \longrightarrow \sf \qquad {x}^{2} - 3x + 13x - 39 = 0[/tex]

[tex]\longrightarrow \sf \qquad {x}(x - 3)+ 13(x - 3) = 0[/tex]

[tex]\longrightarrow \sf \qquad ({x}+ 13)(x - 3) = 0[/tex]

Whether, the value of x :

[tex]\longrightarrow \sf \qquad {x}+ 13 = 0[/tex]

[tex]\longrightarrow \pmb{\bf \qquad {x} = - 13}[/tex]

Whether, the value of x :

[tex]\longrightarrow \sf \qquad {x} - 3 = 0[/tex]

[tex]{\longrightarrow { \pmb{\bf \qquad {x} = 3}}}[/tex]

So,

  • Option C (x = 3 or x = -13) is correct.
ACCESS MORE