Respuesta :

The point outside the solution set are the false values of the inequality

The point outside the solution set of (y+4)^2/9-(x+1)^2/9>1 is (-1,-1)

How to determine the point outside the solution set

The inequality of the graph is given as:

[tex]\frac{(y+4)^2}{9}-\frac{(x+1)^2}{9} > 1[/tex]

Next, we test the options

  • Option A. (-2,4)

This gives

[tex]\frac{(4+4)^2}{9}-\frac{(-2+1)^2}{9} > 1[/tex]

[tex]\frac{64}{9}-\frac{1}{9} > 1[/tex]

Evaluate the difference

[tex]7 > 1[/tex] -- this is true

  • Option B. (2,-12)

This gives

[tex]\frac{(-12+4)^2}{9}-\frac{(2+1)^2}{9} > 1[/tex]

[tex]6.1 > 1[/tex]  -- this is true

  • Option C. (-1,-1)

This gives

[tex]\frac{(-1+4)^2}{9}-\frac{(-1+1)^2}{9} > 1[/tex]

[tex]1 > 1[/tex]  -- this is false

Hence, the point outside the solution set of (y+4)^2/9-(x+1)^2/9>1 is (-1,-1)

Read more about solution sets at:

https://brainly.com/question/13729904

Answer: it is C (-1, -1)

Step-by-step explanation:

ACCESS MORE