Respuesta :
When the change of base formula is applied to log subscript 4 baseline (x+2), the result is [tex]\dfrac{log(x+2)}{log4}[/tex].
What are the Properties of logarithms?
There are four basic properties of logarithms:
[tex]\rm log_aU+ log_aV = log_a(UV)\\\\log_aU - log_aV = log_a(\dfrac{U}{V})\\\\log_aU^n = n\ log_aU\\\\\log_ab = \dfrac{log_xb}{log_xa}\\\\[/tex]
When the change of base formula is applied to log subscript 4 baseline (x 2), the result expression will be,
[tex]\rm log_4(x+2)=\dfrac{log_{10}(x+2)}{log_{10}4}=\dfrac{log(x+2)}{log4}[/tex]
Hence, when the change of base formula is applied to log subscript 4 baseline (x+2), the result is [tex]\dfrac{log(x+2)}{log4}[/tex].
Learn more about Logarithms:
https://brainly.com/question/7302008
Answer:
a - StartFraction log (x + 2) Over log 4 EndFraction
Step-by-step explanation:
edge 2022