Which expression results when the change of base formula is applied to log subscript 4 baseline (x 2)? startfraction log (x 2) over log 4 endfraction startfraction log 4 over log (x 2) endfraction startfraction log 4 over log x 2 endfraction startfraction log x 2 over log 4 endfraction

Respuesta :

When the change of base formula is applied to log subscript 4 baseline (x+2), the result is [tex]\dfrac{log(x+2)}{log4}[/tex].

What are the Properties of logarithms?

There are four basic properties of logarithms:

[tex]\rm log_aU+ log_aV = log_a(UV)\\\\log_aU - log_aV = log_a(\dfrac{U}{V})\\\\log_aU^n = n\ log_aU\\\\\log_ab = \dfrac{log_xb}{log_xa}\\\\[/tex]

When the change of base formula is applied to log subscript 4 baseline (x 2), the result expression will be,

[tex]\rm log_4(x+2)=\dfrac{log_{10}(x+2)}{log_{10}4}=\dfrac{log(x+2)}{log4}[/tex]

Hence, when the change of base formula is applied to log subscript 4 baseline (x+2), the result is [tex]\dfrac{log(x+2)}{log4}[/tex].

Learn more about Logarithms:

https://brainly.com/question/7302008

Answer:

a - StartFraction log (x + 2) Over log 4 EndFraction

Step-by-step explanation:

edge 2022

ACCESS MORE