The perimeter of the rectangle is the length of the boundary of the perimeter of the rectangle. The perimeter of the rectangle is 2(√29+√10).
The perimeter of the rectangle is the length of the boundary of the perimeter of the rectangle.
In order to find the perimeter of the rectangle, we need to find the third side(Hypotenuse) of each triangle, therefore,
In ΔA,
[tex](Hypotenuse)^2 =(Perpendicular)^2+(Base)^2[/tex]
[tex]GF^2 = 3^2+1^2\\GF=\sqrt{10}[/tex]
In ΔB,
[tex](Hypotenuse)^2 =(Perpendicular)^2+(Base)^2[/tex]
[tex]EF^2 = 2^2+5^2\\EF=\sqrt{29}[/tex]
In ΔC,
[tex](Hypotenuse)^2 =(Perpendicular)^2+(Base)^2[/tex]
[tex]GH^2 = 2^2+5^2\\GH=\sqrt{29}[/tex]
In ΔD,
[tex](Hypotenuse)^2 =(Perpendicular)^2+(Base)^2[/tex]
[tex]EH^2 = 3^2+1^2\\EH=\sqrt{10}[/tex]
Now, the perimeter of the rectangle is,
[tex]Perimeter\ EFGH = EF+ GF + GH +EH[/tex]
[tex]=\sqrt{29}+\sqrt{10}+\sqrt{29}+\sqrt{10}\\\\=2\sqrt{29}+2\sqrt{10}\\\\=2(\sqrt{29}+\sqrt{10})[/tex]
hence, the perimeter of the rectangle is 2(√29+√10).
Learn more about Perimeter:
https://brainly.com/question/6465134