Respuesta :
Answer:
[tex]\frac{1331x-6\times \:121^x}{5\times \:121^x}[/tex]
Step-by-step explanation:
[tex]\frac{11^2x\times \:11^1-6\times \:121^x}{5\times \:121^x}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^b\times \:a^c=a^{b+c}[/tex]
[tex]11^2\times \:11^1=11^{2+1}[/tex]
[tex]=\frac{11^{2+1}x-6\times \:121^x}{5\times \:121^x}[/tex]
[tex]\mathrm{Add\:the\:numbers:}\:2+1=3[/tex]
[tex]=\frac{11^3x-6\times \:121^x}{5\times \:121^x}[/tex]
[tex]11^3=1331[/tex]
[tex]=\frac{1331x-6\times \:121^x}{5\times \:121^x}[/tex]
[RevyBreeze]
Answer:
1
Step-by-step explanation:
[tex] \dfrac{11^{2x} \times 11^1 - 6 \times 121^x}{5 \times 121^x} = [/tex]
[tex] = \dfrac{11 \times 11^{2x} - 6 \times 11^{2x}}{5 \times 11^{2x}} [/tex]
[tex] = \dfrac{5 \times 11^{2x}}{5 \times 11^{2x}} [/tex]
[tex] = 1 [/tex]