Respuesta :

Answer:

x = 57.8°

explanation:

  • opposite length : 11
  • hypotenuse length : 13

[tex]\sf sin(x)= \dfrac{opposite}{hypotensue}[/tex]

[tex]\hookrightarrow \sf sin(x) = \dfrac{11}{13}[/tex]

[tex]\hookrightarrow \sf x = sin^{-1}(\dfrac{11}{13} )[/tex]

[tex]\hookrightarrow \sf x = 57.8[/tex]

Answer:

57.8° (nearest tenth)

Step-by-step explanation:

Use the sine trig ratio:

[tex]\mathsf{\sin(\theta)=\dfrac{O}{H}}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • H is the hypotenuse

Given:

  • [tex]\mathsf{\theta=x}[/tex]
  • O = 11
  • H = 13

[tex]\implies \mathsf{\sin(x)=\dfrac{11}{13}}[/tex]

[tex]\implies \mathsf{x=\arcsin\dfrac{11}{13}}[/tex]

[tex]\implies \mathsf{x=57.8 \textdegree \ (nearest \ tenth)}[/tex]

ACCESS MORE