Respuesta :

Answer :

  • 8 meters .

Explanation :

  • The volume of the cylinder is 50π cubic meters.
  • The cylinder has radius 2.5 meters.

To Find :

  • The height of the cylinder.

Solution :

We know,

[tex]{ \longrightarrow\qquad \bf\pi {r}^{2}h = \bf{Volume_{(cylinder) } }}[/tex]

Where,

  • r is the radius of the cylinder.

  • h is the height of the cylinder.

Now, Substituting the values :

[tex]{ \longrightarrow\qquad \sf\pi \times {(2.5)}^{2} \times h = {50 \pi } }[/tex]

[tex]{ \longrightarrow\qquad \sf\pi \times 6.25 \times h = {50 \pi } }[/tex]

Cancelling π from both sides :

[tex]{ \longrightarrow\qquad \sf \cancel\pi \times 6.25 \times h = {50 \: \cancel \pi } }[/tex]

[tex]{ \longrightarrow\qquad \sf 6.25 \times h = {50 } }[/tex]

[tex]{ \longrightarrow\qquad \sf h = { \dfrac{50}{6.25} } }[/tex]

[tex]{ \longrightarrow\qquad {\pmb {\bf{h = {8 } }}}}[/tex]

Therefore,

  • The height of the cylinder is 8 meters .
ACCESS MORE