Respuesta :

Answer:

A.) 1644

given equation:  [tex]\sf p(x)=x^4-9x^3-5x^2-3x+4[/tex]

To be divided with ( x + 5 )

Then,

x + 5 = 0

x = -5

Put this into the equation to find the remainder.

[tex]\sf p(x)=(-5)^4-9(-5)^3-5(-5)^2-3(-5)+4[/tex]

[tex]\sf p(x)= 1644[/tex]

Use the remainder theorem to find the remainder when p(x)=x^4-9x^3-5x^2-3x+4 is divided by x+5

A.) 1644

B.) 1244

C.) -636

D.) -644

~~~~~~~~~~~~~~~~~~~~~

[tex]\sf p(x)=x^4-9x^3-5x^2-3x+4[/tex]

[tex] \sf p(x) = (-5)^4 - 9(-5)^3 (-5)^2 - 3 (-5) + 4 [/tex]

[tex] \sf \green {(p(x) = 1644)} [/tex]

#CarryOnLearning

#LibreAngMatuto

ACCESS MORE