Respuesta :

Answer:

Given Integral is:

[tex] \\ { \displaystyle{ \int{ \large{ \rm{ \frac{1}{x( {x}^{3} + 1) }dx }}}}} \\ [/tex]

Can be written as:

[tex] \\ { \large{ \longrightarrow{ \displaystyle{ \int { \rm{\frac{3 {x}^{2} }{3 {x}^{2} \times x( {x}^{3} + 1) } dx}}}}}}[/tex]

[tex] \\ { \large{ \longrightarrow \frac{1}{3} \: { \displaystyle{ \int{ \rm { \frac{ {3x}^{2} }{ {x}^{3} ( {x}^{3} + 1)} dx}}}}}}[/tex]

Now to evaluate this integral , we use the method of Substitution.

So, Substitute:

[tex] \: \: \: \: \: \: \: \: \: \: \: \: { \rightarrow \: {\large{\rm{ {x}^{3} = y}}}}[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: \rightarrow \: { \large{ \rm{3 {x}^{2} dx = dy}}}[/tex]

So, on Substituting the values in above integral, we get:

[tex] \\ { \large{ \longrightarrow{ \frac{1}{3} \: \displaystyle{ \int{\rm{ \frac{1}{y(y + 1)} }}}}}}[/tex]

[tex] \\ { \large{ \longrightarrow{ \frac{1}{3} \: { \displaystyle{ \int{ \rm{ \frac{1 + y - y}{y(y + 1)}dy }}}}}}}[/tex]

[tex] \\ { \large{ \longrightarrow{ \frac{1}{3} \: { \displaystyle{ \int{ {\rm{ \frac{y + 1 - y}{y(y + 1)}dy }}}}}}}}[/tex]

[tex] \\ { \large{ \longrightarrow{ \frac{1}{3} \: { \displaystyle{ \int{ \rm{ \left[ \frac{1}{y} - \frac{1}{y + 1} \right ] }dy}}}}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{ \frac{1}{3} \left( log |y| - log |y + 1| \right) + c}}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{ \frac{1}{3} log | \frac{y}{y + 1} | + c }}}}[/tex]

[tex]{ \large{ \longrightarrow{ \rm{ \frac{1}{3} log | \frac{ {x}^{3} }{ {x}^{3} + 1 } | + c }}}}[/tex]

Hence,

[tex] \\{ \boxed{ \pink { \large{ \displaystyle{ \int{ \rm{ \frac{dx}{x ({x}^{3 } + 1 )} = \frac{1}{3 } log{ \huge{ |}} \frac{ {x}^{3} }{ {x}^{3} + 1} { \huge{ | }} + c}}}}}}}[/tex]

After applying algebraic substitution, partial fraction decomposition and integration rules the integral of the non-trascendental expression [tex]\frac{1}{x\cdot (x^{3}+1)}[/tex] is equal to the trascendental expression [tex]I = \frac{1}{3}\cdot \ln \left|\frac{x^{3}}{x^{3}+1} \right| + C[/tex].

How to determine the indefinite integral of a given expression

According to the statement we have an integrable rational expression formed by non-trascendental expressions, that is, expressions whose behavior is described solely by algebraic components. This expression can be solved by algebraic substitution after making the following modifications:

[tex]\int {\frac{dx}{x\cdot (x^{3}+1)} } = \int {\frac{3\cdot x^{2}}{3\cdot x^{3}\cdot (x^{3}+1)} } \, dx = \frac{1}{3}\int {\frac{3\cdot x^{2}}{x^{3}\cdot (x^{3}+1)} } \, dx[/tex]

And the following substitutions are used: u = , du = 3 · x² dx

[tex]\frac{1}{3} \int {\frac{du}{u \cdot (u+1)} }[/tex]

This is expression is equivalent to the following by partial fraction decomposition:

[tex]-\frac{1}{3}\int {\frac{du}{u+1} } \, du +\frac{1}{3}\int {\frac{du}{u} }[/tex]

And the integral is now solved:

[tex]I = -\frac{1}{3}\cdot \ln |u+1| + \frac{1}{3}\cdot \ln |u| + C[/tex]

[tex]I = \frac{1}{3}\cdot \ln \left|\frac{u}{u+1} \right| + C[/tex]

[tex]I = \frac{1}{3}\cdot \ln \left|\frac{x^{3}}{x^{3}+1} \right| + C[/tex]

Where C is the integration constant.

After applying algebraic substitution, partial fraction decomposition and integration rules the integral of the non-trascendental expression [tex]\frac{1}{x\cdot (x^{3}+1)}[/tex] is equal to the trascendental expression [tex]I = \frac{1}{3}\cdot \ln \left|\frac{x^{3}}{x^{3}+1} \right| + C[/tex].

To learn more on integrals, we kindly invite to check this: https://brainly.com/question/22008756 #SPJ5