Respuesta :
There are four basic properties of logarithms. The solution of the logarithmic problem [tex]\rm log_{12}\dfrac{x^4\sqrt{x^3-2}}{(x+1)^5}\\\\[/tex] is [tex]\rm 4log_{12}\ x+\dfrac12 log_{12} (x^3-2)-5log_{12}{(x+1)[/tex].
What are the Properties of logarithms?
There are four basic properties of logarithms:
[tex]\rm log_aU+ log_aV = log_a(UV)\\\\\rm log_aU - log_aV = log_a(\dfrac{U}{V})\\\\\rm log_aU^n = n\ log_aU\\\\\rm log_ab = \dfrac{log_xb}{log_xa}[/tex]
The given logarithmic problem can be solved in the following manner,
[tex]\rm log_{12}\dfrac{x^4\sqrt{x^3-2}}{(x+1)^5}\\\\[/tex]
By using the division law of logarithm, [tex]\rm log_a(\dfrac{x}{y}) = log_ax - log_ay[/tex]
[tex]\rm log_{12}\dfrac{x^4\sqrt{x^3-2}}{(x+1)^5} = log_{12}\ {x^4\sqrt{x^3-2}}-log_{12}{(x+1)^5}[/tex]
By addition law of Logarithm, [tex]\rm log_a(xy)= log_ax+ log_ay[/tex]
[tex]\rm log_{12}\ x^4+ log_{12} \sqrt{x^3-2}}-log_{12}{(x+1)^5}[/tex]
Using the logarithmic Property, [tex]\rm log\ a^m =mlog\ a[/tex]
[tex]=\rm log_{12}\ x^4+ log_{12} \sqrt{x^3-2}}-log_{12}{(x+1)^5}\\\\=log_{12}\ x^4+ log_{12} (x^3-2)^{\frac12}-log_{12}{(x+1)^5\\\\[/tex]
[tex]=4log_{12}\ x+\dfrac12 log_{12} (x^3-2)-5log_{12}{(x+1)[/tex]
Hence, the solution of the logarithmic problem [tex]\rm log_{12}\dfrac{x^4\sqrt{x^3-2}}{(x+1)^5}\\\\[/tex] is [tex]\rm 4log_{12}\ x+\dfrac12 log_{12} (x^3-2)-5log_{12}{(x+1)[/tex]
Learn more about Logarithms:
https://brainly.com/question/7302008