Pablo generates the function f (x) = three-halves (five-halves) superscript x minus 1 to determine the xth number in a sequence. which is an equivalent representation? f(x 1) = five-halvesf(x) f(x) = five-halvesf(x 1) f(x 1) = three-halvesf(x) f(x) = three-halvesf(x 1)

Respuesta :

The [tex]x^{th}[/tex] number in the sequence will be   [tex]F[x]=\dfrac{5}{2} F[x][/tex]

What will be the xth number in the sequence?

The given function is

[tex]F[x]=\dfrac{3}{2} \times \dfrac{5}{2}^{x-1}[/tex]

Now at  [tex]x=x+1[/tex] for the function

[tex]F[x+1]=\dfrac{3}{2} \times \dfrac{5}{2}^{x+1-1}[/tex]

[tex]F[x+1]=\dfrac{3}{2} \times \dfrac{5}{2}^{x }[/tex]

Now we can write

[tex]F[x+1]=\dfrac{3}{2} \times \dfrac{5}{2}^{x-1} \dfrac{5}{2}^1[/tex]

Since     [tex]F[x]=\dfrac{3}{2} \times \dfrac{5}{2}^{x-1}[/tex]

so

[tex]F[x]=\dfrac{5}{2} F[x][/tex]

Thus the [tex]x^{th}[/tex] number in the sequence will be   [tex]F[x]=\dfrac{5}{2} F[x][/tex]

To know more about Functions follow

https://brainly.com/question/24748644

Answer:

A

Step-by-step explanation:

Took exam and got 100

ACCESS MORE