Find the length of AB

Answer:
D
Step-by-step explanation:
calculate AB using the distance formula
d = [tex]\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }[/tex]
with (x₁, y₁ ) = A (4, 2 ) and (x₂, y₂ ) = B (9, 10 )
AB = [tex]\sqrt{(9-4)^2+(10-2)^2}[/tex]
= [tex]\sqrt{5^2+8^2}[/tex]
= [tex]\sqrt{25+64}[/tex]
= [tex]\sqrt{89}[/tex]
≈ 9.4 units ( to 1 dec. place )
Answer:
[tex]D:\:about\:9.4\:units[/tex]
Step-by-step explanation:
[tex]d=\sqrt{(x_{2}-x_{1})^2 +(y_{2}-y_{1})^2 }[/tex]
[tex]AB =[/tex] [tex]\sqrt{(9-4)^2+(10-2)^2}[/tex]
[tex]=\sqrt{5^2+8^2}[/tex]
[tex]=\sqrt{25+64}[/tex]
[tex]=\sqrt{89}[/tex]
[tex]9.4\:\:units\:[/tex]