If using the method of completing the square to solve the quadratic equation
x2 -9x + 2 = 0, which number would have to be added to "complete the square"?

Respuesta :

Answer:

Add the square of half of the coefficient of [tex]x[/tex] to both sides

[tex]\left(-\dfrac92\right)^2=\dfrac{81}{4}[/tex]

Completing the square:

Rewrite  [tex]x^2-9x+2=0[/tex]  in the form  [tex]y=(x-b)^2 +c[/tex]

Add the square of half of the coefficient of [tex]x[/tex] to both sides:

[tex]\implies x^2-9x+2+\left(-\dfrac92\right)^2=\left(-\dfrac92\right)^2[/tex]

[tex]\implies x^2-9x+2+\dfrac{81}{4}=\dfrac{81}{4}[/tex]

[tex]\implies\left(x-\dfrac92\right)^2 +2=\dfrac{81}{4}[/tex]

[tex]\implies\left(x-\dfrac92\right)^2 +2-\dfrac{81}{4}=0[/tex]

[tex]\implies\left(x-\dfrac92\right)^2 -\dfrac{73}{4}=0[/tex]

[tex]\implies\left(x-\dfrac92\right)^2 -\dfrac{73}{4}=0[/tex]