Respuesta :

Answer:

65°

step-by-step explanation:

  • opposite angles of a parallelogram are of equal measure.

solve for x:

116x - 1 = 114x + 1

116x - 114x = 1 + 1

2x = 2

x = 1

Find angle C:

  • The base angles in parallelogram sum up to 180°

m∠C + 116(1) - 1 = 180°

m∠C = 180° - 115

m∠C = 65°

Solution:

We know that:

  • Opposite angles in a parallelogram are equal.
  • Sum of the angles in a quadrilateral always sum up to 360°

This means that:

  • [tex]116x - 1 = 114x + 1[/tex]
  • [tex]\angle C = \angle E[/tex]
  • [tex](116x - 1) + (114x + 1) + \angle C + \angle E = 360\°[/tex]

Step-1: Find the value of x.

[tex]116x - 1 = 114x + 1[/tex]

[tex]\rightarrow 116x - 114x = 1 + 1[/tex]

[tex]\rightarrow 2x = 2[/tex]

[tex]\rightarrow \bold{x = 1}[/tex]

Step-2: Solve for ∠C.

[tex](116x - 1) + (114x + 1) + \angle C + \angle C = 360\°[/tex]

[tex]\rightarrow (116x - 1) + (114x + 1) + \angle C + \angle E = 360\°[/tex]                           [∠C = ∠E]

[tex]\rightarrow 116x - 1 + 114x + 1 + 2\angle C = 360\°[/tex]                                  

[tex]\rightarrow 230x + 2\angle C = 360\°[/tex]                                        

[tex]\rightarrow 230(1) + 2\angle C = 360\°[/tex]                                                                 [x = 1]

[tex]\rightarrow 230 + 2\angle C = 360\°[/tex]                                                                          

[tex]\rightarrow 2\angle C = 360 - 230[/tex]

[tex]\rightarrow 2\angle C = 130[/tex]

[tex]\rightarrow \boxed{\bold{\angle C = \frac{130}{2} = 65\°}}[/tex]