Respuesta :

[tex]\bold{\huge{\underline{ Solution }}}[/tex]

Here, we will use the concept of integration and algebric identities

  • Integration is the process of finding function that is a derivate of given function
  • Three important trigonometric identities :-
  1. [tex]\sf{ sin^{2}{\theta}+ cos^{2}{\theta} = 1 }[/tex]
  2. [tex]\sf{ 1 + tan^{2}{\theta} = sec^{2}{\theta} }[/tex]
  3. [tex]\sf{ 1 + cot^{2}{\theta} = cosec^{2}{\theta} }[/tex]

Let's Begin :-

We have,

[tex]\bold{\displaystyle\int}{\bold{\dfrac{ cos^{2}x}{1 + sinx}}}{\bold{dx}}[/tex]

By using trigonometric identity,

  • [tex]\sf{ sin^{2}{\theta}+ cos^{2}{\theta} = 1 }[/tex]

[tex]\sf{\displaystyle\int}{\sf{\dfrac{ 1 -sin^{2}x }{1 + sinx}}}{\sf{dx}}[/tex]

By using algebraic identity :-

  • [tex]\sf{ a^{2} - b^{2} = ( a + b) (a - b) }[/tex]

[tex]\sf{\displaystyle\int}{\sf{\dfrac{ (1 + sinx) (1 - sinx) }{1 + sinx}}}{\sf{dx}}[/tex]

[tex]\sf{\displaystyle\int}{\sf{( 1 - Sinx)dx}}[/tex]

[tex]\sf{ {\displaystyle\int} dx - {\displaystyle\int}sinxdx}[/tex]

We know that,

  • [tex]\sf{{\int\displaystyle}sin{\theta} d{\theta} = - cos {\theta} + C }[/tex]

[tex]\sf{ x - (-cosx) + c}[/tex]

[tex]\bold{ x + cosx + c}[/tex]

Hence, The answer is x + Cosx + c.

We are given with an integral and need to solve the integral , so let's start ;

[tex]{:\implies \quad \displaystyle \int \sf \dfrac{\cos^{2}(x)}{1+\sin (x)}dx}[/tex]

As we know that sin²(x) + cos²(x) = 1 , using this

[tex]{:\implies \quad \displaystyle \int \sf \dfrac{1-\sin^{2}(x)}{1+\sin (x)}dx}[/tex]

Can be further written as

[tex]{:\implies \quad \displaystyle \int \sf \dfrac{1^{2}-\sin^{2}(x)}{1+\sin (x)}dx}[/tex]

[tex]{:\implies \quad \displaystyle \int \sf \dfrac{\cancel{\{1+\sin (x)\}}\{1-\sin (x)\}}{\cancel{\{1+\sin (x)\}}}dx\quad \qquad \{\because a^{2}-b^{2}=(a+b)(a-b)\}}[/tex]

[tex]{:\implies \quad \displaystyle \int \sf \{1-\sin (x)\}dx}[/tex]

Now , as integrals follow distributive property , so ;

[tex]{:\implies \quad \displaystyle \int \sf 1\: dx-\int \sin (x)dx}[/tex]

Now , as antiderivative (Integration) of sin(x) is -cos(x) + C and that of dx is x + C So ;

[tex]{:\implies \quad \displaystyle \bf \therefore \underline{\underline{\int \bf \dfrac{\cos^{2}(x)}{1+\sin (x)}=x+\cos (x)+C}}}[/tex]

This is the Required answer