please answer this question
![please answer this question class=](https://us-static.z-dn.net/files/dbc/3bdb1783121c1c4416d70acf2a291692.jpg)
[tex]\bold{\huge{\underline{ Solution }}}[/tex]
Here, we will use the concept of integration and algebric identities
We have,
[tex]\bold{\displaystyle\int}{\bold{\dfrac{ cos^{2}x}{1 + sinx}}}{\bold{dx}}[/tex]
By using trigonometric identity,
[tex]\sf{\displaystyle\int}{\sf{\dfrac{ 1 -sin^{2}x }{1 + sinx}}}{\sf{dx}}[/tex]
By using algebraic identity :-
[tex]\sf{\displaystyle\int}{\sf{\dfrac{ (1 + sinx) (1 - sinx) }{1 + sinx}}}{\sf{dx}}[/tex]
[tex]\sf{\displaystyle\int}{\sf{( 1 - Sinx)dx}}[/tex]
[tex]\sf{ {\displaystyle\int} dx - {\displaystyle\int}sinxdx}[/tex]
We know that,
[tex]\sf{ x - (-cosx) + c}[/tex]
[tex]\bold{ x + cosx + c}[/tex]
Hence, The answer is x + Cosx + c.
We are given with an integral and need to solve the integral , so let's start ;
[tex]{:\implies \quad \displaystyle \int \sf \dfrac{\cos^{2}(x)}{1+\sin (x)}dx}[/tex]
As we know that sin²(x) + cos²(x) = 1 , using this
[tex]{:\implies \quad \displaystyle \int \sf \dfrac{1-\sin^{2}(x)}{1+\sin (x)}dx}[/tex]
Can be further written as
[tex]{:\implies \quad \displaystyle \int \sf \dfrac{1^{2}-\sin^{2}(x)}{1+\sin (x)}dx}[/tex]
[tex]{:\implies \quad \displaystyle \int \sf \dfrac{\cancel{\{1+\sin (x)\}}\{1-\sin (x)\}}{\cancel{\{1+\sin (x)\}}}dx\quad \qquad \{\because a^{2}-b^{2}=(a+b)(a-b)\}}[/tex]
[tex]{:\implies \quad \displaystyle \int \sf \{1-\sin (x)\}dx}[/tex]
Now , as integrals follow distributive property , so ;
[tex]{:\implies \quad \displaystyle \int \sf 1\: dx-\int \sin (x)dx}[/tex]
Now , as antiderivative (Integration) of sin(x) is -cos(x) + C and that of dx is x + C So ;
[tex]{:\implies \quad \displaystyle \bf \therefore \underline{\underline{\int \bf \dfrac{\cos^{2}(x)}{1+\sin (x)}=x+\cos (x)+C}}}[/tex]
This is the Required answer