The edges of the bases of the frustum of a regular square pyramid have lengths 5 and 9, and the slant height of the frustum is 6.

What is the volume of the frustrum


I will give 100 points

Respuesta :

Given↷

  • a ⇢5
  • b ⇢9
  • l ⇢6

To find ↷

  • The volume of the frustum

Solution ↷

We know that,

[tex]V = \frac{1}{3} (a{}^{2} + ab + b{}^{2})h \\ [/tex]

Also,

[tex]l {}^{2} = h {}^{2} + (b - a) {}^{2} [/tex]

[tex]6{}^{2} = h {}^{2} + (9 - 5) {}^{2} [/tex]

[tex]36 = h {}^{2} +16[/tex]

[tex]h {}^{2} = 36 - 16[/tex]

[tex]h = \sqrt{20} [/tex]

[tex]h = 4.47[/tex]

Now , putting the value in the formula of volume

we get,

[tex]V = \frac{1}{3} (5{}^{2}+ 5 \times 9 + 9{}^{2})4.47 \\ [/tex]

[tex]V = \frac{1}{3} (25 + 5 \times 9 + 81)4.47 \\ [/tex]

[tex]V = \frac{1}{3} (25 + 45 + 81)4.47 \\ [/tex]

[tex]V = \frac{1}{3} \times 151 \times 4.47 \\ [/tex]

[tex]V = 224.99[/tex]

Hence, the volume of the given frustum is 224.99 cubic unit

ACCESS MORE