We know that,
[tex]V = \frac{1}{3} (a{}^{2} + ab + b{}^{2})h \\ [/tex]
Also,
[tex]l {}^{2} = h {}^{2} + (b - a) {}^{2} [/tex]
[tex]6{}^{2} = h {}^{2} + (9 - 5) {}^{2} [/tex]
[tex]36 = h {}^{2} +16[/tex]
[tex]h {}^{2} = 36 - 16[/tex]
[tex]h = \sqrt{20} [/tex]
[tex]h = 4.47[/tex]
Now , putting the value in the formula of volume
we get,
[tex]V = \frac{1}{3} (5{}^{2}+ 5 \times 9 + 9{}^{2})4.47 \\ [/tex]
[tex]V = \frac{1}{3} (25 + 5 \times 9 + 81)4.47 \\ [/tex]
[tex]V = \frac{1}{3} (25 + 45 + 81)4.47 \\ [/tex]
[tex]V = \frac{1}{3} \times 151 \times 4.47 \\ [/tex]
[tex]V = 224.99[/tex]
Hence, the volume of the given frustum is 224.99 cubic unit