solve for x using logarithm:
25^x-3(5^x)=0
![solve for x using logarithm 25x35x0 class=](https://us-static.z-dn.net/files/db6/0fab96bbbf65f64f5e7fb0faab6d5e88.jpg)
Answer:
[tex]x = 0.68[/tex]
Step-by-step explanation:
We would like to find out the value of x using logarithms of the given equation .The equation is ,
[tex]\longrightarrow 25^x - 3(5^x)=0\\[/tex]
Add [tex]3(5^x)[/tex] on both sides,
[tex]\longrightarrow 25^x = 3(5^x) [/tex]
Using log to the base 10 on both sides, we have;
[tex]\longrightarrow log_{10}(25^x) = log_{10}\{3(5^x)\}[/tex]
Recall that [tex] log(ab ) = log\ a + log\ b [/tex] .
[tex]\longrightarrow log_{10}(25^x)=log_{10}3 + log_{10}5^x [/tex]
Recall the properties of logarithm as [tex] log\ a^b = b\ log\ a [/tex] .
[tex]\longrightarrow xlog25 = log_{10}3 + xlog_{10}5 [/tex]
Again we can rewrite it as ,
[tex]\longrightarrow xlog(5^2)=log_{10}3+xlog_{10}5\\ [/tex]
[tex]\longrightarrow 2x\ log_{10}5 = log_{10}3+xlog_{10}5 \\ [/tex]
[tex]\longrightarrow 2x\ log_{10}5-x\ log_{10}5 = log_{10}5 [/tex]
Simplify,
[tex]\longrightarrow x\ log_{10}5=log_{10}3 [/tex]
Divide both sides by log5 ,
[tex]\longrightarrow x =\dfrac{log_{10}3}{log_{10}5} [/tex]
Put on the values of log 3 and log5 ,
[tex]\longrightarrow x =\dfrac{0.47}{0.69} [/tex]
Simplify,
[tex]\longrightarrow \underline{{\underline{\boldsymbol{ x = 0.68}}}}[/tex]
And we are done!