Respuesta :

Answer:

[tex]x = 0.68[/tex]

Step-by-step explanation:

We would like to find out the value of x using logarithms of the given equation .The equation is ,

[tex]\longrightarrow 25^x - 3(5^x)=0\\[/tex]

Add [tex]3(5^x)[/tex] on both sides,

[tex]\longrightarrow 25^x = 3(5^x) [/tex]

Using log to the base 10 on both sides, we have;

[tex]\longrightarrow log_{10}(25^x) = log_{10}\{3(5^x)\}[/tex]

Recall that [tex] log(ab ) = log\ a + log\ b [/tex] .

[tex]\longrightarrow log_{10}(25^x)=log_{10}3 + log_{10}5^x [/tex]

Recall the properties of logarithm as [tex] log\ a^b = b\ log\ a [/tex] .

[tex]\longrightarrow xlog25 = log_{10}3 + xlog_{10}5 [/tex]

Again we can rewrite it as ,

[tex]\longrightarrow xlog(5^2)=log_{10}3+xlog_{10}5\\ [/tex]

[tex]\longrightarrow 2x\ log_{10}5 = log_{10}3+xlog_{10}5 \\ [/tex]

[tex]\longrightarrow 2x\ log_{10}5-x\ log_{10}5 = log_{10}5 [/tex]

Simplify,

[tex]\longrightarrow x\ log_{10}5=log_{10}3 [/tex]

Divide both sides by log5 ,

[tex]\longrightarrow x =\dfrac{log_{10}3}{log_{10}5} [/tex]

Put on the values of log 3 and log5 ,

[tex]\longrightarrow x =\dfrac{0.47}{0.69} [/tex]

Simplify,

[tex]\longrightarrow \underline{{\underline{\boldsymbol{ x = 0.68}}}}[/tex]

And we are done!

ACCESS MORE