Respuesta :
Answer:
Part A
Cone
[tex]\mathsf{volume \ of \ a \ cone=\dfrac13\pi r^2h}[/tex]
(where r is the radius and h is the height)
Given:
- r = a
- h = 2r = 2a
[tex]\implies \mathsf{volume \ of \ the \ cone=\dfrac13\pi \cdot a^2\cdot2a=\dfrac23\pi a^3}[/tex]
Hemisphere
[tex]\mathsf{volume \ of \ a \ sphere=\dfrac43\pi r^3}[/tex]
[tex]\implies \mathsf{volume \ of \ a \ hemisphere=\dfrac12 \cdot\dfrac43\pi r^3=\dfrac23\pi r^3}[/tex]
Given
- r = a
[tex]\implies \mathsf{volume \ of \ the \ hemisphere=\dfrac23\pi a^3}[/tex]
Therefore
volume of cone with radius a = volume of hemisphere with radius a
Part B
[tex]6.82^2\times\sqrt[3]{0.005}[/tex]
Take log of base 10:
[tex]\implies \log_{10}(6.82^2\times\sqrt[3]{0.005})[/tex]
Using log law [tex]\log(a \times b)=\log a+\log b[/tex]:
[tex]\implies \log_{10}(6.82^2)+\log_{10}(\sqrt[3]{0.005})[/tex]
Using low law [tex]\log(a^b)=b \log a[/tex]
[tex]\implies 2\log_{10}(6.82)+\dfrac13\log_{10}(0.005)[/tex]
Log tables
The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.
The mantissa is found using the log tables and is always prefixed by a decimal point.
The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number
Use the log tables to find [tex]\log_{10}(6.82)[/tex]:
6.82 = 6.82 × 10⁰
⇒ characteristic = 0
log table: row 68, column 2 ⇒ mantissa 8338 ⇒ 0.8338
characteristic + mantissa = 0 + 0.8338 = 0.8338
Therefore, [tex]\log_{10}(6.82)=0.8338[/tex]
Use the log tables to find [tex]\log_{10}(0.005)[/tex]:
[tex]0.005 = 5.0 \times 10^{-3}[/tex]
⇒ characteristic = -3
log table: row 50, column 0 ⇒ mantissa 6990 ⇒ 0.6990
characteristic + mantissa = -3 + 0.6990 = -2.301
Therefore, [tex]\log_{10}(0.005)=-2.301[/tex]
Therefore,
[tex]2\log_{10}(6.82)+\dfrac13\log_{10}(0.005)[/tex]
[tex]\implies 2\cdot0.8338 + \dfrac13 \cdot -2.301[/tex]
[tex]\implies 1.6676 - 0.767[/tex]
[tex]\implies 0.9006[/tex]
Therefore,
[tex]\log_{10}(6.82^2\times\sqrt[3]{0.005})=0.9006[/tex]
Using [tex]\log_{a}b=c \implies a^c=b[/tex]
[tex]\implies 6.82^2\times\sqrt[3]{0.005}=10^{0.9006}[/tex]
[tex]\implies 6.82^2\times\sqrt[3]{0.005}=7.954[/tex]
given for cone:
- radius: a
- height: 2a
volume of cone:
[tex]\sf \rightarrow \dfrac{1}{3} \pi r^2h[/tex]
[tex]\sf \rightarrow \dfrac{1}{3} \pi (a)^2(2a)[/tex]
[tex]\sf \rightarrow \dfrac{2\pi a^3}{3}[/tex]
no metal wasted means no volume wasted while melting so volume: same.
volume of hemisphere:
[tex]\hookrightarrow \sf \dfrac{2}{3} \pi r^3[/tex]
This is equal to the volume of cone.
[tex]\hookrightarrow \sf \dfrac{2}{3} \pi r^3 = \dfrac{2\pi a^3}{3}[/tex]
[tex]\hookrightarrow \sf a^3 = r^3[/tex]
[tex]\hookrightarrow \sf a = r[/tex]
Therefore shown that radius of cone is similar to radius of hemisphere.
(b)
[tex]6.82^2 *\sqrt[3]{0.005}[/tex]
[tex]7.9535[/tex]
[tex]7.95[/tex]