Respuesta :

Answer:

Part A

Cone

[tex]\mathsf{volume \ of \ a \ cone=\dfrac13\pi r^2h}[/tex]

(where r is the radius and h is the height)

Given:

  • r = a
  • h = 2r = 2a

[tex]\implies \mathsf{volume \ of \ the \ cone=\dfrac13\pi \cdot a^2\cdot2a=\dfrac23\pi a^3}[/tex]

Hemisphere

[tex]\mathsf{volume \ of \ a \ sphere=\dfrac43\pi r^3}[/tex]

[tex]\implies \mathsf{volume \ of \ a \ hemisphere=\dfrac12 \cdot\dfrac43\pi r^3=\dfrac23\pi r^3}[/tex]

Given

  • r = a

[tex]\implies \mathsf{volume \ of \ the \ hemisphere=\dfrac23\pi a^3}[/tex]

Therefore

volume of cone with radius a = volume of hemisphere with radius a

Part B

[tex]6.82^2\times\sqrt[3]{0.005}[/tex]

Take log of base 10:

[tex]\implies \log_{10}(6.82^2\times\sqrt[3]{0.005})[/tex]

Using log law [tex]\log(a \times b)=\log a+\log b[/tex]:

[tex]\implies \log_{10}(6.82^2)+\log_{10}(\sqrt[3]{0.005})[/tex]

Using low law [tex]\log(a^b)=b \log a[/tex]

[tex]\implies 2\log_{10}(6.82)+\dfrac13\log_{10}(0.005)[/tex]

Log tables

The characteristic of the logarithm of a number is the exponent of 10 in its scientific notation.

The mantissa is found using the log tables and is always prefixed by a decimal point.

The row is the first two non-zero digits of the number, and the column is the 3rd digit of the number

Use the log tables to find [tex]\log_{10}(6.82)[/tex]:

6.82 = 6.82 × 10⁰

⇒ characteristic = 0

log table:  row 68, column 2 ⇒ mantissa 8338 ⇒ 0.8338

characteristic + mantissa = 0 + 0.8338 = 0.8338

Therefore, [tex]\log_{10}(6.82)=0.8338[/tex]

Use the log tables to find [tex]\log_{10}(0.005)[/tex]:

[tex]0.005 = 5.0 \times 10^{-3}[/tex]

⇒ characteristic = -3

log table: row 50, column 0 ⇒ mantissa 6990 ⇒ 0.6990

characteristic  + mantissa = -3 + 0.6990 = -2.301

Therefore, [tex]\log_{10}(0.005)=-2.301[/tex]

Therefore,

[tex]2\log_{10}(6.82)+\dfrac13\log_{10}(0.005)[/tex]

[tex]\implies 2\cdot0.8338 + \dfrac13 \cdot -2.301[/tex]

[tex]\implies 1.6676 - 0.767[/tex]

[tex]\implies 0.9006[/tex]

Therefore,

[tex]\log_{10}(6.82^2\times\sqrt[3]{0.005})=0.9006[/tex]

Using [tex]\log_{a}b=c \implies a^c=b[/tex]

[tex]\implies 6.82^2\times\sqrt[3]{0.005}=10^{0.9006}[/tex]

[tex]\implies 6.82^2\times\sqrt[3]{0.005}=7.954[/tex]

given for cone:

  • radius: a
  • height: 2a

volume of cone:

[tex]\sf \rightarrow \dfrac{1}{3} \pi r^2h[/tex]

[tex]\sf \rightarrow \dfrac{1}{3} \pi (a)^2(2a)[/tex]

[tex]\sf \rightarrow \dfrac{2\pi a^3}{3}[/tex]

no metal wasted means no volume wasted while melting so volume: same.

volume of hemisphere:

[tex]\hookrightarrow \sf \dfrac{2}{3} \pi r^3[/tex]

This is equal to the volume of cone.

[tex]\hookrightarrow \sf \dfrac{2}{3} \pi r^3 = \dfrac{2\pi a^3}{3}[/tex]

[tex]\hookrightarrow \sf a^3 = r^3[/tex]

[tex]\hookrightarrow \sf a = r[/tex]

Therefore shown that radius of cone is similar to radius of hemisphere.

(b)

[tex]6.82^2 *\sqrt[3]{0.005}[/tex]

[tex]7.9535[/tex]

[tex]7.95[/tex]