Solve both Question related to Volume of Solids. 50 Points
![Solve both Question related to Volume of Solids 50 Points class=](https://us-static.z-dn.net/files/dc5/831cdf58204f65018dfcb98599c713e5.jpg)
Given for the cone:
given for the spheres:
Find volume of cone:
[tex]\sf \hookrightarrow \dfrac{1}{3} \pi r^2h[/tex]
[tex]\sf \hookrightarrow \dfrac{1}{3} \pi (3a)^2(4a)[/tex]
[tex]\sf \hookrightarrow 12\pi a^3[/tex]
Find volume of sphere:
[tex]\sf \hookrightarrow \dfrac{4}{3} \pi r^3[/tex]
[tex]\sf \hookrightarrow \dfrac{4}{3} \pi a^3[/tex]
Divide volume of cone by volume of sphere:
[tex]\sf \hookrightarrow \dfrac{12\pi a^3}{ \dfrac{4}{3} \pi a^3}[/tex]
[tex]\rightarrow 9[/tex]
Therefore proved 9 such spheres can be made using the metal cone.
We know that volume of cone is [tex]12\pi a^3[/tex]
[tex]\sf \rightarrow 12\pi a^3 = 12936[/tex]
[tex]\sf \rightarrow a^3 = \dfrac{12936}{12\pi}[/tex]
[tex]\sf \rightarrow a = \sqrt[3]{\dfrac{12936}{12\pi}}[/tex]
[tex]\sf \rightarrow a =7[/tex]
Therefore the radius of sphere is 7 cm